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Abstract

Political risk and coordination failure are two leading causes of low investment and
growth in low- and middle-income countries. The international community devotes
substantial resources to addressing these challenges. We show that these problems are
intertwined: political risk induces coordination failure. We then propose a subsidy
program to eliminate politically induced miscoordination. Our program—Guaranteed
Return with Profit- and Loss-Sharing (GPLS)—offers a minimum return to investors
while clawing back returns above a specified maximum. The design screens out in-
vestors who would have invested even without subsidies and induces participation
from more hesitant investors at minimal cost. Optimally designed GPLS programs
can substantially lower costs relative to natural alternatives, such as guaranteed rate-
of-return schemes or Guaranteed Return with Profit-Sharing (GPS) programs. Such
optimal subsidies represent a major step toward feasible and sustainable international
interventions to coordinate development under political risk.
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1 Introduction

There is a vast and growing global investment gap in achieving sustainable development
in low- and middle-income countries.! The international community devotes enormous re-
sources to confronting this challenge.? How can these resources be most effectively leveraged

to mitigate the investment gap and promote sustainable growth?

The answer depends on understanding why investment® remains low in many developing
countries. Political risk and coordination failure are two leading explanations (World Bank,
2017, 2024). Conflict, policy uncertainty, expropriation and confiscatory taxation, corrup-
tion, and weak rule of law are associated with low economic progress (Acemoglu, Johnson,
and Robinson, 2001; Alfaro, Kalemli-Ozcan, and Volosovych, 2008; Boix, 2003; Caldara and
Tacoviello, 2022; Jensen, 2008; North and Weingast, 1989; Reinhart and Rogoff, 2004).* Sim-
ilarly, countries may be trapped into low levels of investment and growth if investors fail to
coordinate and internalize positive externalities in demand, infrastructure, and technology
adoption (Buera et al., 2021; Ciccone, 2002; Cooper and John, 1988; Garg, 2025; Hoff and
Stiglitz, 2001; Murphy, Shleifer, and Vishny, 1989; Rodriguez-Clare, 2005; Rodrik, 1996).
As the 2017 World Development Report emphasizes “coordination is required to induce in-

vestment and innovation. Both depend on firms and individuals believing that others will

also invest” (World Bank, 2017, p. 56).

Our key insight is that political risk induces coordination failure among investors, but well-

designed subsidy programs can nearly eliminate miscoordination at low cost.” Political risk

! According to the World Investment Report 2023, “the investment gap across all [Sustainable Develop-
ment Goal| sectors has increased from $2.5 trillion — estimated in [ World Investment Report 2014]. . .to more
than $4 trillion per year today. .. The increase is the result of both underinvestment and additional needs”
(United Nations Conference on Trade and Development, 2023, p. xv).

2For example, the World Bank Group alone committed $117.5 billion towards development projects in
the fiscal year 2024 (Multilateral Investment Guarantee Agency, 2024, p. 4).

3We use a broad notion of investment, including physical and human capital, technology, and innovation.

4The literature is vast. See Abadie and Gardeazabal (2003), Alesina and Perotti (1996), and Cerra and
Saxena (2008) for unrest and conflict; Baker, Bloom, and Davis (2016) and Fernandez-Villaverde et al. (2015)
for policy uncertainty; Boehm and Oberfield (2020) and Ponticelli and Alencar (2016) for weak rule of law;
and Fisman and Svensson (2007) and Mauro (1995) for corruption.

5Political risk can induce other forms of coordination failure, e.g., between lenders and borrower-investors
(Chang, 2010). Our approach applies to such settings as long as subsidies can be conditional on investments.



and coordination failure are intertwined: A larger number of investors reduces political risk,
which in turn encourages further investment. For example, Shadmehr (2019) argues that
when technology exhibits complementarity between capital and labor, greater investment
raises wages, thereby reducing the likelihood of a successful revolution. Similarly, greater in-
vestment may yield a more “business-friendly” median voter and encourage more far-sighted
policies, reflecting both improved economic conditions and more promising future opportuni-
ties (Bernhardt, Krasa, and Shadmehr, 2022; Chang, 2010). Strategic uncertainty, combined
with politically induced complementarity, leads to inefficiently low investment. If a poten-
tial investor was sure that many others would invest, it would anticipate a lower political
risk, and become more optimistic about returns. However, investors remain uncertain about
each other’s assessments of investment prospects and therefore decisions, leading to misco-
ordination. If, instead of many, there was one large potential investor, there would be no
miscoordination inefficiencies. However, given the vast scales, resolving the investment gap
is not feasible for one or a few entities.® Addressing the investment gap therefore requires

the participation of many private investors.

Building on the insights of Shen and Zou (2024), we propose a subsidy program’ that nearly
eliminates miscoordination at a lower cost than natural alternatives. The program features
voluntary investor participation, guarantees a specified payoff, and claws back any excess
profits. It also compensates pre-guarantee losses up to the maximum feasible rate. We call
this the optimal guaranteed return with profit- and loss-sharing (GPLS) program. We show
that loss-sharing is essential: without it, any guaranteed return with profit-sharing (GPS)
program can be significantly more expensive—while still better than optimal guarantees
without profit-sharing. A restricted version of GPLS (R-GPLS), in which the profit- and
loss-sharing rates are always equal, is also less cost-effective. We will also refer to R-GPLS

as the Shen-Zou (SZ) program.®

SEven if it were feasible, such a centralized setting would introduce additional frictions, including those
associated with monopolies—Lucas (1990) identified monopolies, supported by imperial powers, as a key
political risk.

"One may view the program as an insurance program. We call it a subsidy program to emphasize that
underwriters will transfer funds to participants in expectation.

8We focus on applying recent theoretical advances to address the global investment gap. Methodologically,

2



A development agency can entice any investment level by offering sufficiently high payoffs to
potential investors to swamp all the risk. However, such a high guarantee can be prohibitively
expensive. We maintain the realistic assumption that it will be economically or politically
infeasible for development agencies to offer a program that induces investment when the
investment environment is sufficiently bad. Even when an agency can induce an aggregate
investment level, should it do so by subsidizing investment through a guaranteed payoft?
Any program that offers a guaranteed payoff for investment to eliminate miscoordination
will attract not only potential investors who would not have invested without the program,
but also the sufficiently optimistic potential investors who would have invested even without
the program. This significantly raises program costs. To screen out these investors the
agency can adjust the program to claw back any profits in excess of the promised return in
the event that investments pay off. Now, those who were optimistic enough to invest without

the program will not join, reducing the program costs. This is the optimal GPS program.

The optimal GPS program improves upon offering subsidies in the form of a simple guar-
anteed payoff, but its screening is only partial. If the agency knew the degree of optimism
of potential investors, it would provide each investor with just enough funds to induce the
desired number of investors: it would not offer any incentives to those who would have
invested anyway, continuing toward less pessimistic ones until the desired level is reached.
More pessimistic potential investors of course would have needed more funds. However, the
agency does not know potential investors’ degrees of optimism, and more optimistic ones
have incentives to pretend to be pessimistic to receive more favorable conditions from the
agency (Borgers, 2015). With the optimal GPS program nearly all investors added to the
fold receive more funds from the agency compared to a setting in which the agency knew

these investors’ degree of optimism, leaving significant room for improvement.

The optimal GPLS program addresses the problem by offering a more flexible structure.

the core analysis of Shen and Zou (2024) is in a regime change setting, whereas in our setting net payoffs are
continuous. Their Appendix B outlines an extension that encompasses R-GPLS. Our theoretical contribution
lies in analyzing both more and less restrictive (GPS and GPLS) programs than their proposed intervention,
showing that the optimal GPLS program is more cost-effective—see Sections 5.1 and 6.



Instead of offering a large guaranteed return to all participants, the optimal GPLS program
offers a smaller guarantee, but picks up a share of an investor’s pre-guarantee losses. This
makes the program less attractive to more optimistic investors who anticipate to receive
less benefits from the program. Consequently, they invest without joining the program.
Like GPS, the optimal GPLS has full claw back to deter optimistic investors. We assume
that development agencies cannot fully pick up the losses, which would imply the ability to
induce investment even in the worst investment conditions. As long as an agency does not
fully pick up the losses, GPLS will be more cost effective than R-GPLS (SZ), in which the

profit-sharing rate is reduced to match the loss-sharing rate.

Our approach complements the solutions offered in the political risk literature to foster
investment and growth, including trade agreements (Biithe and Milner, 2008, 2014), institu-
tional change to introduce checks and balances (Acemoglu, Naidu, et al., 2019; Ferraz and
Finan, 2011; La Porta et al., 2004; North, 1990) and legal protection for property rights
(Acemoglu and Johnson, 2005; Besley and Ghatak, 2010; Li and Resnick, 2003), as well as
transparency, monitoring, and deliberation (Banerjee, Duflo, et al., 2020; Djankov et al.,
2010; Ferraz and Finan, 2008; Fujiwara and Wantchekon, 2013; Lépez-Moctezuma et al.,
2022; Olken, 2007). It parallels recent microfinance literature on the importance of contract
structure and borrower heterogeneity, highlighting the need for better screening to foster
development (Balboni et al., 2022; Banerjee, Breza, et al., 2019; Bari et al., 2024; Bryan,
Karlan, and Osman, 2024). The growth literature on coordination failure among investors
suggests subsidies (Buera et al., 2021; Rodrik, 1996), highlighting that income-based (as op-
posed to our investment-based) incentive programs are ineffective (Bond and Pande, 2007),
but does not focus on identifying efficient programs. Given the vast scale involved in inter-
national development, designing optimal programs that achieve the same outcome at lower
costs is crucial. We build on recent developments in literature on screening in coordina-
tion games (Morris and Shadmehr, 2023; Shen and Zou, 2024) to identify such programs,

comparing their costs with natural sub-optimal alternatives.

A broader literature studies contracting and subsidies in the presence of complementarity



(see Halac (2025) for a review), including in global games (Luo and Yang, 2023; Sakovics
and Steiner, 2012). However, the focus of that literature is not on screening, e.g., Sédkovics
and Steiner (2012) analyze how to allocate subsidies to ex ante heterogeneous agents based
on observable characteristics in a global games setting. Similarly, aside from Morris and
Shadmehr (2023), the literature on coordination in conflict does not involve screening (Boix
and Svolik, 2013; Bueno de Mesquita, 2010; Bueno de Mesquita and Shadmehr, 2023; Casper
and Tyson, 2014; Chen, Lu, and Suen, 2016; Egorov and Sonin, 2021; Gieczewski and Kocak,
forthcoming; Little, 2012; Tyson and Smith, 2018).°

The international community recognizes political risk as a key obstacle to investment in
developing countries (United Nations Conference on Trade and Development, 2025; World
Economic Forum, 2024). Development agencies—such as the World Bank Group and the
U.S. International Development Finance Corporation—offer various instruments to mitigate
political risk and encourage private investment. These include guarantees that cover polit-
ical losses (e.g., political risk insurance), subsidies (e.g., below-market loans), and blended
finance, which combines public and private capital through multiple instruments (Arel-
Bundock, Peinhardt, and Pond, 2020; Multilateral Investment Guarantee Agency, 2023).1°
These tools are designed to reduce political risk and thereby stimulate private investment.
However, while the international community is aware of coordination problems among in-
vestors, these programs are not primarily structured to address coordination failure. In
Section 6.1 we examine a sample of these instruments and show how their design compares
to the optimal Guaranteed Return with Profit- and Loss-Sharing (GPLS) program. This
comparison highlights how widely used programs align with—or diverge from—an approach

explicitly aimed at eliminating coordination failure.

9In Gieczewski and Shadmehr (2024)’s analysis of election fraud, rewards are provided only if the project
succeeds, and agents are motivated to take the risky action solely to obtain these designed rewards.

10See https://ida.worldbank.org/en/financing/ida-private-sector-window for information on
the International Development Association’s Private Sector Window and https://www.ifc.org/en/
what-we-do/sector-expertise/blended-finance/how-blended-finance-works for the International
Finance Corporation’s Blended Finance.


https://ida.worldbank.org/en/financing/ida-private-sector-window
https://www.ifc.org/en/what-we-do/sector-expertise/blended-finance/how-blended-finance-works
https://www.ifc.org/en/what-we-do/sector-expertise/blended-finance/how-blended-finance-works

2 Model

There is a continuum 1 of investors, indexed by i € [0, 1], each endowed with K units of
capital. They simultaneously decide whether to invest their capital in the global market or in
a developing country. The expected return on capital in the global market is . The return
from investing in the country depends on factor productivity and the resolution of political
risk. We model political risk as an effective tax rate T' € [0,1]. This effective tax reflects
not only formal taxation but also the likelihood of expropriation, destruction from conflict,

corruption costs (Shleifer and Vishny, 1993), and weak rule of law and contract enforcement.

Let k; € {0,1} denote an investor j’s decision, where 0 means investing in the global market
and 1 means investing in the developing country, so that the aggregate invested capital is
K =K [ k;dj. The production technology is Y = A(K + K) where A > 0 is the total factor
productivity, and K > 0 is an exogenous, immobile capital in the country, e.g., land. A
share a € (0,1) of the output is divided equally among the investors. An investor’s payoff

from investing in the country is the after-tax return on her capital: (1 — T)aAK.

Empirical studies emphasize that greater investment and better economic conditions tend to
reduce political risk (Bazzi and Blattman, 2014; Blattman and Miguel, 2010; Briickner and
Ciccone, 2010; Caldara and lacoviello, 2022; Johns and Wellhausen, 2016; Malesky, 2009).
In our model, T' captures political risk. To be consistent with this empirical regularity,
we could directly assume that T" decreases in output Y, and hence in aggregate capital K.
Instead, we provide a micro-foundation for this relationship, which we use throughout the
paper. Specifically, after investment and production occur, the representative citizen in the

country receives a share (1 — «) of output and chooses the tax rate T'. The citizen’s payoff is
ue = (1=T)1=-a)Y + 2V0TY,

where TY is the tax revenue and 0 captures both the productivity of tax revenues and the

citizen’s ideological or cultural attitude toward taxation.!!

1 An interpretation of the representative citizen is the median voter in a setting with a continuum 1 of



The productivity A in the developing country is uncertain. Investors share a prior that
A~ UJA, A]. Each investor i receives a noisy private signal ; about A, where z; = A+ o¢;,

o >0, with ¢ ~ iid U[—1,1]. The fundamental A and noise ¢;s are independent.

The game proceeds as follows. First, nature determines A and ¢;s, and investors observe
their signals, z;5. Next, investors simultaneously make investment decisions (k;);cpo,1]. Then,
production takes place and players receive their shares. Then, the effective tax rate T is

chosen. Payoffs are received and the game ends.

An investor i’s strategy o; : [A — 0,A + o] — {0,1} is a mapping from her signal z;
to her investment decision k;. The representative citizen’s strategy o, : R, — [0,1] is a
mapping from the output to an effective tax rate T" € [0,1]. The equilibrium concept is
Perfect Bayesian Nash equilibrium. We focus on symmetric monotone strategies in which

an investor ¢ invests if and only if ¢’s signal z; is above a threshold z* € R.

3 Inefficient Investment and Strategic Uncertainty

We begin by analyzing the citizen’s choice of effective tax rate. The citizen’s problem is:

max (1 —T)(1 — )Y +2/6(TY) (1)

T€[0,1]

Lemma 1. The equilibrium level of effective tax rate is

= min oy =i e TR )

All omitted proofs are in Online Appendix B. The tax rate is decreasing in output, and

hence in the total factor productivity A and in the aggregate investment K. This generates

workers, each providing 1 unit of labor inelastically, receiving the labor share (1 —«) equally, and then voting
on a tax rate T that finances the public good g = TY. In other settings, the representative citizen may
instead be interpreted as the government, or a fictitious agent encompassing the government, citizens, and
rebels. Our micro-foundation in the text should be viewed as a modeling tool. What matters for our results
is that, in equilibrium, 7" will be decreasing in output Y, and hence in aggregate capital K—see Lemma 1.



a force for strategic complementarity among the investors.

For a given aggregate capital, the tax rate is a random variable because productivity A is
random. When more investors invest in the country, this reduces the tax rate in the FoSD
sense: the distribution of tax rate shifts to left, raising an investor’s incentives to also invest

in the country.

We now consider the investors’ decisions. Given productivity A, aggregate capital K, and
tax rate 7™, an investor’s net rate of return from investing in the country versus in the global

market is
ad 1

aW(K,A)::(l—T*)aA—r:aA—(1_a)2K+K—r, (3)

where we substituted 7™ from Lemma 1, assuming that 7™ is interior, and recognizing that
investors anticipate the tax rate for any given productivity A and aggregate capital K.
To ease exposition and have unique equilibrium, we maintain the following assumption.
Assumption 1. Let A; = A—7n(K, A) = 24—% and A, = A—7(0,A) = g—{—ﬁ.

4
1. 4> m=pk
2. A<Al—0'
3. Z>Ah+0'

Part 1 ensures that the tax rate is always less than 1. Parts 2 and 3 ensure the existence
of lower and upper dominance regions needed for uniqueness. To ease exposition, when

indifferent, we assume that a potential investor will invest in the country.
Proposition 1 (Complete Information Benchmark). Suppose productivity A is known.
o [f A< A, then there is a unique equilibrium in which no one invests.
o [f A> Ay, then there is a unique equilibrium in which everyone invests.

o If A€ A, Ap), then there are multiple equilibria.



When the productivity is sufficiently large, A > A;, the rate of return is higher in the
country than in the global market even if the aggregate investment is negligible. Then, there
is a unique equilibrium in which all potential investors invest in the country, because it is
a dominant strategy. Similarly, when the productivity is sufficiently small, A < A;, the
rate of return is lower in the country even if all potential investors invest in the country.
Then, there is a unique equilibrium in which no potential investor invests in the country. In
between, there are multiple equilibria, including one in which all invest, and one in which

no one invests.

We now turn to the incomplete information setting with uncertain productivity and infor-
mation asymmetry. Investors use their information to assess the expected net payoff from
investing. They have uncertainty about the productivity and they have strategic uncertainty
about other investors’ behavior. For a given realization of productivity A and other investors’

cutoff x* for investing, the aggregate invested capital in the country is
K(A;2*) = K Pr(z; > 2*|A), (4)

which is increasing in productivity. Thus, higher productivity directly increases incentives
to invest by raising the expected pre-tax returns, and it indirectly increases incentives by
reducing the effective tax and hence the expected after-tax returns. It does so because
higher productivity reduces the tax rate by raising the output, both directly through the
productivity channel A and indirectly through increasing the aggregate capital K + K (A; z*).

An investor i with signal x; thus estimates i’s net expected payoff Elan(K(A;x*), A) | 2],
investing if and only if z; > x*. The investor must be indifferent between investing in the
country and in the global market at the threshold signal x; = x*. It follows that any z*
that satisfies E[m(K(A;2*),A) | z; = z*] = 0 constitutes an equilibrium. Obviously, if a
solution exists, we must have z* € [A;, A;]: an investor with signal z; > Aj has a dominant

strategy to invest in the country; and one with signal x; < A; has a dominant strategy not



to.!? To assess her net expected payoff from investing, Elaw(K (A;z*), A) | z;], the marginal
investor with the threshold signal x; = * must estimate the tax rate and, hence, aggregate
investment K (A;z*). A key observation is that when o < min{A — A, A, — A}, so that

x* + o is away from the boundaries, we have:
Pr(z; > 2*|A) | @ = 2" ~ U[0, 1], (5)

so that the marginal investor always believes that the aggregate (new) capital in the country,

K (A; x*), is uniformly distributed on [0, K. Then, the indifference condition becomes

a1 dK
l—a)PKK+K

K
aE[A|z; = 2*] — aE[A - T*|x; = 2*] = az* — / ( —r =0, (6)
0

yielding a unique solution. In fact, it is straightforward to confirm that the setting satisfies
the standard assumptions for the common value setting in Morris and Shin (2003). The above

arguments adopt their proof of Proposition 2.2 to the setting with uniform distributions.!

Proposition 2 (No Intervention Benchmark). Let @ = min{A — A, A, — A}. If 0 < @,
there is a unique symmetric equilibrium in cutoff strategies in which an investor i with signal

x; tnvests in the country if and only if x; > x*. Moreover, x* is the unique solution to

fOFﬂ'(K,ZL'*)dKZO.'
T d 1 | K+ K
T = —orR og K )

Comparative statics are intuitive.

Corollary 1. Higher global market returns r and public good productivity 0 reduce investment

incentives, while higher immobile capital K and available investment K raise investment

: s . da dat do*  da* SRS
incentives—because they reduce tazes: i df < 0 < -, S5 Moreover, there is a @ €

12When no one else invests (K = 0), i invests whenever her private signal is greater than A, because
E[r(0, A)|z; = Ap] = 0. Similarly, when everyone else invests (K = K), i does not invest if her private signal
is below A;, because E[r(K, A)|z; = A;] = 0.

13Tt follows that focusing on monotone strategies is without loss of generality and that the unique equilib-
rium is the only one surviving the iterated deletion of dominated strategies.
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(0,1) such that % < 0 if and only if o < Q.

The effect of public good productivity ¢, immobile capital K, and available investment
K are all through taxes. Higher capital share a has conflicting effects: the direct effect
raises investment incentives, but the indirect, strategic effect through higher taxes reduces
incentives. When capital share is small, the direct effect tends to dominate, but when it is

large, the strategic effect tends to dominate.

Inefficiency If there was only one large investor with capital stock K and signal z;, the

investor would invest in the country if and only if
E[r(K,A) | z;] >0, thatis x; > A, (7)

However, when there are many investors, strategic uncertainty prevents investors from co-
ordinating their investment decisions efficiently. The following result is immediate from the

inspection of x* and A;.

Proposition 3 (Strategic Uncertainty and Inefficiency). The investment threshold is lower
in the centralized setting with one large investor than in the decentralized setting: A, < x*.

Moreover, x* — A; is increasing in «, 6, and decreasing in K.

Intuitively, higher capital share «, public good productivity , and lower immobile capital

K all increase the marginal effect of higher capital investment in reducing tax, e.g., from

Lemma 1, we have % %LK*} < 0. Similarly, higher available capital K implies decisions to

invest in the country have higher impact on reducing the effective tax rate.

Alternatively, we note that it is socially optimal for all potential investors to invest when
A > A;. In contrast, in the decentralized setting, all investors invest if and only if A > x*+o0.
Thus, there is an inefficiency interval, Ay := [A;,x* + o), such that when productivity is
realized within it, A € Aj, there is inefficiently low investment in the country due to strategic

uncertainty that hinders coordination among investors.'*

14Tf one large potential investor with signal x; decides whether to invest, its expected payoff will be

11



4 Guaranteed Return with Profit-Sharing (GPS)

Proposition 3 suggests that there is room for intervention by the international community to

mitigate the inefficiencies due to politically-induced coordination failure. Subsidy programs

can increase investment. For example, from (3), a return subsidy s > r — oA + ﬁé
will make investment the dominant strategy. However, this induces investment even when
investment is inefficient and it is prohibitively expensive because all potential investors will

always invest to take advantage of government subsidies.

We aim to design subsidy programs that eliminate miscoordination inefficiency in the least
costly manner. Such cost-effective programs should, at a minimum, discourage participation
by investors who would have invested even without the subsidies. This suggests that optimal
subsidy structure must impose some expected participation costs in addition to providing

guaranteed returns.

We begin by considering Guaranteed Return with Profit-Sharing (GPS) programs. GPS
programs are described by a guaranteed return s € [0,3], and a profit-sharing rate ¢ € [0, 1]
that a participating investor must pay to the guarantor if the investment turns a profit.
This is equivalent to programs in which a minimum return is guaranteed and investor pays
a premium that is increasing in the profit and is paid only if there is a positive profit. The
participants pay the guarantors when profits are sufficiently high in exchange for payments

when profits are lower.

When GPS programs are offered, the investors’ decisions include whether to participate in
the program. Accordingly, investor i’s choice set is k; € {0, 1,2}, where k; = 0 denotes not
investing, k; = 1 denotes investing with participation in the program, and k; = 2 denotes

investing without participation.

Consider an (§,t) program, where § is the guarantee and ¢ is the profit-sharing rate. Given

productivity A and aggregate investment level K, a potential investor ¢’s returns from not

ad 1
(1-a)? K+K

max {n aE[A|z;] — } - K, so there is no risk-aversion and no demand for insurance. The only

underlying reason for intervention in our setting would be miscoordination inefficiency.

12



investing, and from investing with and without participation in the program are r, (1 —
T*)aA 4+ § — tmax{(l — T*)aA — 1,0}, and (1 — T*)aA, respectively. It is convenient to
work with an affine transformation by subtracting the payoffs by r and dividing by «, so
that the program becomes (s,t) = (§/«,t). Thus, (an affine transformation of) the investor

i’s returns from participating in a (s,t) program is
(1, K,A) =n(K,A) —t-max{m(K,A),0} + s, (8)

where (K, A) is defined in (3). The corresponding payoffs from not investing is 7(0, K, A) =
0, and from investing without participation in the program is (2, K, A) = n(K, A).

Consistent with the previous section, we assume that an investor invests in the country when
she is indifferent between investing and not; and does not participate in the program when

indifferent between investing with participation and investing without participation.

The program makes potential investors more optimistic about their returns from investing in
the developing country. Therefore, the lower dominance region (where the dominant strategy
is investing in global markets) shrinks. The following assumption ensures the existence
of a lower dominance region and the uniqueness of equilibrium with the GPS program.
Substantively, it captures the realistic feature that the guarantor does not have so much

resources to induce investment even in the worst state of the world A = A.

Assumption 2. If productivity is sufficiently low, not investing in the country is the domi-

nant strategy under GPS programs: m(K,A)+5=A— A +3 < —0.

The condition 7(K, A) + 5 < 0 suffices for the existence of a lower dominance region. The

stricter condition in Assumption 2 ensures a unique equilibrium for a given o > 0.

Equilibrium An investor i’s strategy o; : [A — 0, A 4+ o] — {0,1,2} is a mapping from
her signal x; to her investment and program participation decisions. As in the benchmark,
we focus on equilibria in symmetric monotone strategies. A monotone strategy is (weakly)

increasing, and hence it is characterized by two cutoffs: there are two thresholds ' < z”

13



such that

i) = Laj<aicary + 2 Lay<ayy,

where 1, is the indicator function. That is, investor ¢ with signal x; does not invest (k; = 0)
in the developing country if x; < 2, invests and participates in the program (k; = 1) if
x; € [2/,2"), and invests without program participation (k; = 2), if z; > 2”. Without loss
of generality 2/, 2" € [A — o, A+ o] . If it is never (i.e., except on a measure-0 set) optimal
for investors to take action 0, we set ' = A — o. If it is never optimal for investors to take

action 2, we set 2” = A + 0. Naturally, if investors never take action 1, then 2’ = 2”.

Given aggregate investment K and productivity A, investor i’s relative payoffs from a higher

versus lower action are

SHK,A) =7(1,K,A) —7(0, K, A) = n(K,A) — t - max{n(K, A),0} + s 9)
P(K,A) =7(2,K,A) — (1, K, A) = t - max{n(K, A),0} — s. (10)

Action and state monotonicity hold. In particular, actions are strategic complements. Given
A, both 6*(K, A) and 6%(K, A) are increasing in K. Similarly, given K, they are increasing
in A. Moreover, signals z;s and the fundamental A are affiliated. Lemma 2 then follows

from standard arguments (Frankel, Morris, and Pauzner, 2003, Van Zandt and Vives, 2007).
Lemma 2. Player i’s best response to a monotone strateqy profile is a monotone strategy.

A cutoff pair (2, 2") constitutes a symmetric monotone equilibrium if and only if
7' = min{z s.t. A'(x;2') >0} and 2" = max{min{x s.t. A%(x;2") > 0},2'}, (11)

where A'(z;2') = E[0Y (K (A4;2'), A)|z; = z] and A?(z;2') = E[6*(K(A;2'), A)|z; = 2] and
we take the min to be A + o if the set is empty, i.e., if no x € [A — o, A + 0] satisfies the
corresponding inequalities. For sufficiently low signals, Assumption 1.2 and Assumption 2
ensure that A%(z; '), Al(x;; ") < 0, respectively. Therefore, to find equilibrium cutoffs,

first, we look for solutions to ' = Al(2’;2’); pick the minimum when there are multiple
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solutions, and pick 2/ = A + o when there is no solution. Then, given the solution z’ we

have found, we do the same for 2 = A?(z”;2’). Finally, if 2" < 2/, then we set 2" = 2’

Proposition 4. Suppose assumptions 1 and 2 hold and a GPS program (s,t) is in place.

15

As the noise becomes vanishingly small, there is a unique equilibrium.” In equilibrium,

x' = Al(s,t) < z*, where

, B x*—s~ A >t — s
Als:t) = {min{A(s,t),:c*} P A <zt —s,

and A is the unique solution to

e e L e Y

Moreover,
o ifs >t (A—A), then 2" = A, so that all who invest will participate in the program.

o ifs<t(A—A), then a" = A"(s,t) < A, where

" Ay +s/t s>t (Als,t)— A
Al(s,t) = {Af(;r, t)/ s Et EA’Es,tg - Ag,

so that some who invest will not participate in the program.

When s = t = 0, Proposition 4 implies A’ = 2* and A” = A. The choice of A” is inconse-
quential because there is no difference between participating in such a program or not. Thus,
there is indeterminacy in A”, and we have picked a convenient A” for this special case. For

example, if 5,¢ — 0, with s/t < A — A;, then A” approaches a threshold strictly less than A.

Proposition 4 has intuitive features. The threshold for investing in the country, A’, is weakly
lower than the threshold absent any program; strictly so when the guarantee s is sufficiently

large. Figure 1 demonstrates—in a setting where 5 > z* — A;. When the guarantee s

15We characterize the equilibrium under a GPS program with finite noise, 0 < 0 < min{4; — A, A — A},
(Proposition 9) in Online Appendix A.
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Figure 1: The equilibrium investment threshold A’(s,t) as a function of the GPS program’s
guarantee s and profit-sharing rate ¢. Note that A'(s = z* — A;,t) = A;, where A; and
x* are defined in Assumption 1 and Proposition 2, respectively. Parameters: § = 0.1, 5 =
0.15, a =05, r=1, K=A4A=15 K =2, A=22T.

is sufficiently small (s =~ 0 < 2* — A;), we have A’ = z* regardless of the profit-sharing
magnitude ¢, and the program has no effect, because no one participates. As the guarantee s
increases, A’ falls below z* along A(s,t), reaching A’ = A; (at s = 2* — A;), the productivity
threshold below which investors have a dominant strategy not to invest absent programs. At
this threshold, the coordination failure is fully resolved. Once the guarantee s exceeds the

threshold x* — A;, the investment threshold becomes A" = x* — s < A, falling with s.

The logic is that the marginal investor with threshold signal believes that the fraction of
investors who will invest is uniformly distributed on [0,1]. From (6), the anticipated (nor-
malized) tax payment (per unit of capital) associated with that belief is * — r/a. When
t = 0, as the guarantee s increases, it compensates for both this tax and for a lower produc-

tivity, thereby pushing down the investment threshold:

Eg[tax payment]

i s=A s
@ K~UOEK] @

= A —z"+s, (12)

Ealr(1, K(A; A, A) |2z, = A ~ A —
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Figure 2: The equilibrium participation threshold A”(s,t). Parameters: 6 = 0.1, 5 =
015, a =05 r=1, K=A=15 K=2, A=227.

where tax payment is per unit of capital. At s = 0, the investment threshold at which the
investor is indifferent between investing in the country and not is z*. As s increases, this

threshold falls linearly with s.

Figure 1 also shows how the profit-sharing rate t affects the investment threshold A’. When
there is profit-sharing ¢ > 0, the threshold tends to be higher for a given guarantee, because
some of an investor’s profit will be clawed back. However, the profit-sharing magnitude
t is irrelevant when the guarantee is so small that no one participates, or so large that
the marginal investor anticipates to make no profit to share, investing only to collect the
guarantee. In the middle, where A’ € (A;,z*), higher profit-sharing naturally increases
the investment threshold A’. Figure 2 shows how the threshold for investment without
participation varies with the program features (s,t). We will later describe the intuition in

the context of optimal GPS.

To reach A" = A;, the program needs a sufficiently high guarantee s = * — A;. However, As-
sumption 2 places an upper bound on the guarantee, preventing the guarantor from inducing

investment in the worst state of the world: when the noise is vanishingly small, it requires

17



that s <35 < A;— A. Assumption 3 ensures that, for a fixed noise level o, it is feasible to re-
solve the coordination failure, without violating Assumption 2: the guarantor cannot induce

investment in the worst state of the world, but it can fully remove coordination failure.'6
Assumption 3. [t is feasible to remove the inefficiency interval: o < Ay — (A + z*)/2

Because z* > A; by Proposition 3, the bound A; — (A + z*)/2 > 0 for sufficiently small A,

so that Assumption 3 would hold when noise is small.!”

To eliminate coordination failure, the guarantor must induce potential investors to invest
whenever their signals are above the threshold A;—when the noise is vanishingly small.
Proposition 4 shows that this can be achieved by providing a guarantee s = x* — A;, regard-
less of the profit-sharing magnitude—see Figure 1. It follows that the cheapest program that
can eliminate miscoordination must set the guarantee s = x* — A; and the profit-sharing
magnitude ¢ = 1, both to maximize the clawback and to disincentivize program participa-
tion by those who invest in the country even without additional incentives. Proposition 5
formalizes this result and computes the associated cost of the optimal GPS program that

eliminates miscoordination.

Proposition 5. Suppose assumptions 1, 2, and 3 hold. As the noise becomes vanishingly
small, the optimal GPS that eliminates miscoordination features (s,t) = (z* — A, 1), and its
(JT*—AZ)2

o1
expected cost is 5=—=— v

The intuition builds on that of Proposition 4 around Equation (12). Absent programs, the
opportunity cost of investing for the marginal investor with the threshold signal z* includes

the normalized tax payment (per unit of capital) associated with the belief that the fraction

16Given o, there is no coordination failure whenever =’ < A4; — o.
17 Assumption 3 tends to require that A be small, while Assumption 1.1 tends to require that it be large—
to ensure interior tax rate. These assumptions can be satisfied simultaneously when, e.g., r and A are

sufficiently large that = > (1—604)2 { L KoK 1 log <K+K> } 420 and Assumption 1.3 hold, respectively.

K E % K
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of investors who will invest is uniformly distributed on [0, 1]:

Ek[tax payment]

(67

K~U[0,K] @

The guarantor wants the marginal investor to behave as if she believes that all other potential

investors will invest, so that the associated tax payment is only

E[tax payment]

«

The guarantor pays the difference, x* — A;, via the guarantee. Moreover, because there is no

(pre-program) profit at A = A;, profit-sharing rate is irrelevant for the marginal investor:'8

Ea[m(K(A; A), A)|z; = A < Ez[n(K, A)|z; = A = 0.

While the magnitude of profit-sharing rate ¢ does not change the marginal investor’s decision
whether to invest in the country, it does change program participation decisions of those
who invest. Therefore, it plays a critical role in program costs and hence the design of
optimal GPS programs. This is apparent in Figure 2: among GPS programs with guarantee
s = x* — A;, which resolve miscoordination, (non-)participation threshold A” varies with
the profit-sharing rate t. A higher threshold A” means that a larger fraction of investors
participate in the program. In particular, when ¢t < 1, so that A” > z*, investors with signals
x; € (x*, A") participate, even though they would have invested in the country even absent

any program. The participation of these investors does not help with miscoordination, but

18To see the generality of these arguments, consider a general setting in which an investor’s utility is
u(A, K) (Frankel, Morris, and Pauzner, 2003; Morris and Shin, 2003). In the limit as 0 — 0, F[u(A, K)|z; =
A <0 = EuAK)|lz; = A)] = Eu(A,K)|z; = 2%] < E[u(A,K)|r; = 2*]. The guarantor must pay
s = —F[u(A, K)|z; = A;] to make type A; indifferent between investing and not. Now, suppose payoffs are
additively separable: u(0, K) = u1(0)+uz(K), let & = [ us(K)dK, and recall that the marginal investor (the
one with the threshold * above which players invest) believes that the fraction of investors is U0, 1]. We have
Elu(A, K)|z; = 2] = u1(z*)+ 4 = 0. Thus, s = —Fu(A, K)|z; = Ai] = —(u1(A;) +4) = —u1 (A;) +ug (z¥),

which yields z* — A; for linear uy(-). Moreover, E[u(A, K)|z; = 2*] = u1(z*) + uz(K) = ui(z*) — u1(4y),

where we used E[u(A, K)|z; = A;] = u1(A;) + ua(K) = 0. That is, the most pessimistic investor without
the program (with signal z*) is indifferent between participating and investing without participation.
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raises the costs of the program. Profit-sharing is crucial to screen them out.

Remarkably, by setting ¢ = 1 and thereby claiming all subsequent (pre-program) profits, a
GPS program can nearly perfectly screen out investors who would have invested even without

*

the program—inducing the participation threshold A” = x*. Intuitively, absent programs,
the marginal investor with signal x* is indifferent between investing in the country or in global
markets. Participation in the program (s,t) = (z* — A;, 1), provides this marginal investor
(with signal z*) the payoff s = x* — A, regardless of any profits which will be fully taken
away at the profit-sharing rate of 1. By contrast, not participating in the program, when
it exists, simply makes this marginal investor more optimistic about aggregate investment
and hence the anticipated tax payment: the marginal investor with signal x* believes that
almost all investors will invest, because z* > A;, the new investment threshold induced
by the program. The difference in the anticipated tax payment is exactly z* — A; as we
discussed above. That is, with program (s,t) = (z* — A;, 1), the marginal investor with the
threshold signal x* is indifferent between investing with and without participation in the

program. It follows that reducing the profit-sharing rate from ¢t = 1 tips the balance in favor

of participation, raising the participation threshold A” above z*, and hence program costs.

These intuitions also allow us to provide a heuristic derivation of the program costs. Because

investors with signals x; € [A’, A”) participate in the program, when the noise is vanishingly

small, almost all investors participate in the program with probability Ag:ﬁ’ = %. More-

over, an investor ¢ with signal x; € (A’; A”) obtains a net transfer
s—tn(K,A)~ @ —A)—1(x;—A)=a"—x;, =A" —2; >0, (13)

sothat E[A" —x; | z; € (A, A")| = E[lz*—A| A€ (A, z%)] = a* — # = 4L Therefore,

the expected costs are

([E*—Al)2
A—-A 7

PI"(ZL’i c (A/,AH)) ]E[A” — T | x; € (A,7A”>] ~

N —
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as specified in Proposition 5.
Corollary 2 is immediate from Proposition 3 and Proposition 5.

Corollary 2. The expected cost of the optimal GPS that eliminates miscoordination is in-
creasing in public good productivity  and capital share o, and it is decreasing in the immobile

capital level K.

This result suggests that eliminating miscoordination via GPS programs is cheaper when
capital is invested in industries with less advanced automation technology (Acemoglu and

Restrepo, 2018) (lower «), or where there is abundant immobile capital (higher K).

5 Guaranteed Return with Profit- and Loss-Sharing (GPLS)

GPS programs have appealing features. An optimal GPS program takes a natural form:
the guarantor effectively rents capital from investors who are willing to participate in the
program, and then invests it in the developing country. Those who are more optimistic about
the country’s investment prospects invest without participating in the program. In fact, the

program screens out all investors who would have invested absent the program.

However, as equation (13) showed, even the optimal GPS program offers net positive subsidy
to all participants except the most optimistic one with signal x; = A”, who is made indifferent
between investing with and without participation. In fact, all participants will end up with
the same, strictly positive net payoff s = z* — A; from investing in the country versus
global markets. This feature is problematic for two reasons. First, ideally a GPS program
should make participants indifferent between investing and not investing in the country,
instead of leaving them with net positive payoffs that the program must then pay. Second,
taking a mechanism design approach, more optimistic investors have more incentives to
misreport their types (signals) and therefore should receive (weakly) more rent (Borgers,
2015, Ch. 1). Given that the optimal GPS program already required profit-sharing at rate

1, any adjustment must reduce the guarantee. However, the guarantee is already at the
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minimum amount required to eliminate miscoordination inefficiencies. This suggests that
the GPS program’s instruments are too coarse. To reduce costs, a program should either
(1) allow some miscoordination inefficiencies, or (2) introduce new instruments that can
provide different compensation to different investors depending on their types (signals) or

equivalently, their expected pre-program payoffs.

We thus extend the GPS program to Guaranteed Return with Profit- and Loss-Sharing
(GPLS) program by introducing loss-sharing at a rate ¢t~. GPLS programs are described
by a guaranteed return s € [0,35], a profit-sharing rate ¢ € [0,1], and a loss-sharing rate
t~ € [0,¢] with ¢ < 1, which specifies the fraction of losses covered by the guarantor. The
upper bound ¢ < 1 captures realistic settings in which the guarantor is unable to induce
investment in the worst state of the world. It may also reflect political constraints that

preclude a 100% compensation of losses.

Payoffs from not investing and from investing without participation in the program as well

as our tie-breaking rules are the same as before. Likewise, Assumption 2 is modified to

Assumption 4. If productivity is sufficiently low, not investing in the country is the domi-

nant strategy under GPLS program: n(K,A) T =A-A+ 5 < —o.

Because GPLS programs offer loss-sharing in addition to the guarantee, Assumption 4 implies

Assumption 2, by setting ¢ = 0.
Given productivity A and aggregate investment K, the incremental payoffs from taking
higher versus lower actions under a GPLS program (s,t",¢) are

6t (K, A) =m(K,A) — t" max{n(K,A),0} —t min{n(K, A),0} + s (14)

gpls

025 (K, A) = t" max{r(K, A),0} + ¢t min{r(K, A),0} —s.
Action and state monotonicity continue to hold, and hence best responses to monotone
strategies are also monotone. Similarly, we can compute the equilibrium cutoffs ' and z”

under a GPLS program analogously to a GPS program, with ¢’ ,_ replacing &7, j € {1,2}.

gpls
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The following proposition is analogous to Proposition 4.

Proposition 6. Suppose assumptions 1 and 4 hold and a GPLS program (s,tT,t7) is in
place. As the noise becomes vanishingly small, there is a unique equilibrium.*® In equilibrium,

= Al(s,th,t7) < z*, where

* S . * S
¥ — s A > 1 —

Als,tt 7)) =

min{A(s,t7,t7),2*} A <a*— >

and A is the unique solution to

- s tt —t ) A-r/a A-r/a
At _ g (22X gL
SR P g (1—a)2K{Al—r/a Og<Az—7“/04) }

Moreover,

o ifs>tt (A—A), then 2" = A"(s,t7,t7) = A, so that all who invest will participate

in the program.

o ifs<tt (A—A), then 2" = A"(s,t7,17) < A, where
A+ s/tt s>t (Al(s,tT,t7) — A)
A(s, T t7) = {

Al(s, it t7) ;s <t (A(s,tT,t7) — Ay,
so that some who invest will not participate in the program.

Proposition 6 becomes Proposition 4 by setting ¢t~ = 0 and ¢t© = t. From Proposition 6,
A" = A whenever s = tt = 0 regardless of t~: When ¢t~ > 0, loss-sharing benefits the
participants. When ¢~ = 0, participation has no effect. Thus, there is indeterminacy in A”,

and we have picked a convenient A” for this special case as we did for GPS programs.

To reach A = A;, GPLS programs incentivize investors by a sufficiently attractive combi-

nation of guarantee and lost-sharing: s/(1 —t7) = z* — A;.° The logic is similar to our

19We characterize the equilibrium under GPLS programs with finite noise, 0 < 0 < min{A; — A, A — A},
in Proposition 10 in Online Appendix A.
20 Assumption 4 places an upper bound on the guarantee. Assumption 3 ensures that z* — A; < A; — A,
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Figure 3: The equilibrium investment threshold A’(s,t*,¢7) as a function of the GPLS
program’s guarantee s, profit-sharing parameter tr, and loss-sharing ¢~. Parameters: 0=
0.1, 5=0.15, a=05,r=1, K=A=15 K=2, A=227, t=0..

discussion following Proposition 5. The guarantor must pay z* — A; to the marginal investor,
so that she invests when her signal is just above A;. With GPLS programs, the guarantor
can do so through two channels: guarantee and loss-sharing. With a loss-sharing rate of ™,
the guarantor transfers ¢t~ (z* — A;) to the marginal investor through loss-sharing, requiring

a guarantee of s = (1 —¢7)(z* — A;) to cover the rest.

Any combination of guarantee s and risk-sharing rate ¢~ such that s/(1 —t7) = 2* — A;
will eliminate miscoordination as it makes no difference to an investor to be compensated
through guarantee or risk-sharing. As Figure 3 illustrates, A’ = A; at s = (1 —t7)(a* — A))
for t— =0, 0.5, or 0.9. Importantly, the guarantor does not know which potential investor
is more optimistic and hence will require less subsidy to invest in the country. Moreover,
optimistic investors have incentives to pretend they are pessimistic (have lower signals) to
extract more subsidy. To screen them out and save on costs, the guarantor must maximize

the loss-sharing rate and choose the guarantee just high enough to induce the marginal

so that miscoordination can be eliminated even when the guarantor cannot induce coordination is the worst
state of the world.
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investor to invest. More optimistic investors anticipate lower or no losses and hence lower or
no subsidy through loss-sharing. In contrast, every participant expects to receive the same
guarantee. It follows that the optimal GPLS program features t~ = ¢, and s = (1—t)(z*—4,).

Mirroring the logic of the GPS programs, the guarantor also chooses t* = 1.

Proposition 7. Suppose assumptions 1, 3, and 4 hold. As the noise becomes vanishingly

small, the optimal GPLS program that eliminates miscoordiantion is (s,t,t7) = ((1—¢)(z*—

(1-D)? (a* —A)*

Ap),1,t). Its expected cost is —5— "1

, which 1s strictly smaller than the expected costs

of the optimal GPS program if and only if t > 0.

The optimal GPLS program’s expected cost is lower than that of the optimal GPS program
and coincides with it for t = 0. Remarkably, when loss-sharing rate is near 100%, the
program costs are negligible—in the limit as the noise vanishes. The intuition is that the
guarantor does not need to provide a guarantee to induce the marginal investor to invest:
when ¢t~ = ¢ & 1, the optimal guarantee s = (1 —t)(z* — A;) ~ 0. With negligible optimal
guarantee, and a positive profit-sharing rate t* = 1, nearly no investor participates in the
program: A” ~ A’ ~ A;: investors with signals slightly more optimistic than the marginal
investor—those with signals x; € (4;, A; + ¢)—anticipate a positive payoff, 7(K, 4; + €) ~
€ > 0, and hence no loss-sharing subsidy and nearly no guarantee s ~ 0, but they have to

share their profit as t+ = 1.2

5.1 Restricted GPLS (Shen-Zou Program)

GPLS programs allow for different rates for profit- and loss-sharing. We now analyze the
additional costs to the guarantor introduced if we restrict the rates to be equal: t+ =t~ €

(0,¢], with ¢ € [0,1). We refer to such programs as Restricted GPLS (R-GPLS) programs.

2I'We will discuss realistic restrictions on 7 in the next subsection. Here, we clarify the technicalities
concerning ¢ ~ 1 for completeness. Assumption 4 rules out ¢ = 1 for substantive reasons: the guarantor
should not be able to induce investment even in the worst state of the world. If it was allowed, ¢ = 1,
s =0, and any t* > 0 would induce a continuum of equilibria with A” = A; and A" € [A, A;] without our
tie-breaking rule, and A’ = A with it. Then, an optimal GPLS program along the following path ¢ — 1,
s=(1-1t)(z* — A;) = 0, and any tT > 0 can be viewed as selecting the equilibrium with A’ = A” = 4,
when first 0 — 0 and then ¢ — 1. However, for any given ¢ < 1, the optimal guarantee s > 0, and hence the
optimal profit-sharing t+ = 1.
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An R-GPLS program is analogous to the intervention that Shen and Zou (2024) suggest in

the context of bank runs, and therefore we also refer to them as SZ programs.

Proposition 8. Suppose t > 0, and assumptions 1, 3, and 4 hold. As the noise becomes
vanishingly small, the optimal R-GPLS (SZ) program that eliminates miscoordination is

1-1)° (a*—Ay)?

(s,t1,t7) = (1 —1)(x* — Ay), t,t). Its expected cost is %( 54, which is strictly larger

than the expected costs of the optimal GPLS program if and only if t < 1.

Intuitively, for any ¢ < 1, the optimal program requires s > 0, creating incentives for
optimistic investors to participate. To screen them out, the guarantor wants to choose the
highest profit-sharing rate t*, and so it chooses its upper bound ¢ < 1. In the GPLS program
this upper bound is 1—without violating any substantive assumption, e.g., Assumption 4.

Therefore, the costs of R-GPLS programs are higher.

6 Comparisons: GPS, GPLS, SZ, and Common Programs

Propositions 5, 7, and 8 allow us to compare the costs associated with the programs that

alm to eliminate miscoordination inefficiencies.

Corollary 3. Suppose Assumptions 1 to 4 hold. Let C(i) be the expected costs of the optimal
program i € {GPS,GPLS,SZ}. As the noise becomes vanishingly small,

C(GPLS)=1-C(SZ) = (1—%)-C(GPS).

That is, the costs of optimal SZ and GPS programs are larger than that of the optimal GPLS

program by factors of 1/t and 1/(1 —1)?, respectively.

When there is nearly complete loss-sharing, GPLS and SZ (R-GPLS) coincide: both ¢~ ~
tt = 1. However, this would imply that the guarantor can induce investment regardless of
how bad the state of the world will be—recall Assumption 4. A more realistic assumption

is that ¢ is bounded away from 1. Then, Corollary 3 shows that restricted GPLS programs
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rep | 7 — Ay — A) r+a(A—A)

Table 1: Investor absolute returns under optimal GPS and GPLS programs.

(SZ programs) by requiring ¢~ = ' raises expected program costs by a factor of 1/¢.%2

Conversely, relaxing the R-GPLS (SZ) programs by allowing full profit-sharing while main-
taining the realistic assumption of restricted loss-sharing rate to a maximum of ¢ < 1 can
generate significant savings, more so when ¢ is lower or when miscoordination is a more
significant problem, so that x* — A; is larger; that is when public good productivity § or

capital share « are higher, or the immobile capital level K is lower—see Proposition 3.

We performed the analysis in normalized and net returns, because they determine strategic
behavior. We end by showing the investors’ absolute returns in equilibrium (when the noise

is vanishingly small) under the optimal GPS and GPLS programs.

Corollary 4. Let 1y, and rgys denote an investor’s (absolute) return from participating
in the optimal GPS and GPLS programs, respectively, and let r,, denote the corresponding

return for a non-participating investor. Then, returns are given in Table 1.

Figure 4 illustrates. Optimal GPS and GPLS programs both feature a minimum guaranteed
return. Importantly, they both also feature a maximum return. Participating investors get a
higher payoff than non-participating ones if and only if the productivity shock A is sufficiently
low. For the optimal GPLS program this threshold is higher than A; only by a margin of
(1 — ) Sgps, Where sy, is the guarantee under the optimal GPS program. Therefore, when ¢
is only slightly below 1, potential investors who believe that productivity is at least slightly

above A; will not participate, reducing the program costs. Critically, while the programs

2257 (R-GPLS) programs are more cost effective than GPS programs if and only if  is above a threshold.
The threshold is the solution to (1 — )2 = z in the interval (0, 1).
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Figure 4: Absolute returns as a function of productivity A under optimal GPS and GPLS
programs with guarantees sgps and s, respectively. Parameters: 0=0.1,5=0.15 a=
05, r=1 K=A=15 K=2, A=227,t=08A4 = A,

look qualitatively similar, as Corollary 3 shows, even at a loss-sharing rate of ¢t~ = 0.5, the
optimal GPLS program costs only a quarter of the optimal GPS program. The difference
is in better screening: the optimal GPLS program will have far less participants than the

optimal GPS program, underlying its efficiency.

6.1 Common Programs: Political Risk Insurance, Concessional

Loans, and Blended Finance

International organizations, national governments, and private-sector organizations, pro-
vide instruments to mitigate political risk. While the international community is aware of
the coordination problem among investors (the academic literature goes back to at least
Rosenstein-Rodan (1943)) and the reports of development agencies engage with the issue
(World Bank, 2017), available instruments focus on addressing political risk for one or few
investors and creditors, overlooking the coordination problem. We present an overview of

these instruments and show how their structures relate to the optimal GPLS program struc-
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ture. This comparison provides a benchmark that highlights the features of the optimal
GPLS program, and brings to focus how existing programs could be adjusted to address

miscoordination inefficiencies.

Two classes of instruments stand out: political risk insurance and concessional loans.?3

Political Risk Insurance compensates for losses caused by covered adverse political
events (e.g., breach of contract or political violence) at a premium. These products are
not subsidies in general, and the agencies that offer them are self-sustaining. Examples
include the Multilateral Investment Guarantee Agency MIGA’s Guarantees and the U.S.
International Development Finance Corporation DFC’s Political Risk Insurance.** (Multi-

lateral Investment Guarantee Agency, 2024; World Bank, 2016).

Concessional Loans to investors below the market rate. For example, the International
Finance Corporation IFC’s blended finance instrument offers concessional loans to investors

through the International Development Association (IDA) Private Sector Window (PSW).??

Instruments may be combined in what is known as blended finance, in which, for example, the
International Finance Corporation provides loans, guarantees, and equity investments—some

or all of which may be offered at a discount.?

A concessional loan reduces an investor’s cost of capital and resembles the guaranteed return
in our setting, which is asgys = (1 —t7)(z* — A;) for the optimal GPLS program. Political

risk insurance compensations or guarantees are similar to loss-sharing. In Table 1, we can

230ther policies include providing technical assistance, making equity investment, and offering grants,
although major agencies tend to offer grants only to governments.

24Gee https://www.dfc.gov/what-we-offer/our-products for DFC and https://www.miga.org/
products for MIGA.

25See https://ida.worldbank.org/en/financing/ida-private-sector-window for PSW and https:
//wuw.ifc.org/en/what-we-do/sector-expertise/blended-finance/how-blended-finance-works for
IFC’s Blended Finance.

26These discounts are sometimes referred to as concessionality, e.g., see: https://www.ifc.org/en/
what-we-do/sector-expertise/blended-finance/how-blended-finance-works#concessionality.
For an example, see Ghana Sankofa Gas Project (2020), in which the World Bank Group used several
instruments to help mobilize about $8 billion in private investments for an offshore natural gas development
project in Ghana.
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Figure 5: Absolute returns as a function of productivity A for Political Risk Insurance (PRI),
Blended Finance (BF), a suboptimal GPLS, and the optimal GPLS. A%, and A%, denote
the investment thresholds (A’s) under BF and PRI, respectively. Parameters: 6 = 0.1, 5 =
015, a =05, r=1, K=A=15 K=2 A=227 t=08.

write 74, when A < A; (so there is a loss) as r+asgys — (1 —t7)a(A, — A). Then a(A, —A)
may be viewed as the loss and 7 as the loss-sharing rate.?” Similarly, when A > A;, so there
is a profit, 7y, can be written as 7, + asgys — @(A — A;), so that a(A — A;) resembles
the premium paid to the agency. However, “premium” here is state-contingent, not a fixed,

predetermined amount.

In sum, one may think of political risk insurance and guarantee programs, in a stylized sense,

as featuring t~, ¢ € (0,1) with s = 0, and concessional loans as s > 0 with ¢t~ =t¢T = 0.

Figure 5 shows how a participating investor’s absolute return under the optimal GPLS pro-
gram—designed to eliminate miscoordination—compares with alternatives that are subop-
timal for addressing coordination risk. For example, political risk insurance and guarantees
without concessional loans (s = 0) cannot eliminate miscoordination. Programs with ¢+ < 1

are significantly more expensive: not only they offer higher payments to each participant,

t"a(Ap—A)
r—(asgpis—(1—t)a(Ap—A)) "

27If the program accounts for “concessionality” in the loss-sharing, the rate is
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but importantly, screening is impaired, leading to a larger number of participants. They
are ineffective on both intensive and extensive margins of saving. Finally, programs that
combine concessional loans with loss- and profit-sharing in a suboptimal way could be dou-
bly inefficient: they not only induce coordination when investment should be avoided (see

Ay < A; in Figure 5), but also impose higher costs due to ineffective screening.

7 Conclusion

Political risk and coordination failure are considered two primary hindrances for growth in
developing countries. We showed how political risk can induce coordination failure, and
proposed subsidy programs to mitigate it at minimal cost compared to natural alternatives,
including guarantees. The key is effective screening of potential investors and designing the
program such that only the minimum necessary investors find it beneficial to take advantage

of the program, while others invest, anticipating that the program encourages participation.

Several directions for future research stand out. An alternative approach to providing sub-
sidy programs is that development agencies directly invest as large players. As Corsetti et al.
(2004) show, even one large player can influence coordination. A natural question is whether
and when international agencies can mitigate miscoordination at a lower cost by diverting
funds from subsidies to direct investment. Another direction is to study whether and how in-
ternational agencies can provide information that facilitates coordinating investment (Basak,
Deb, and Kuvalekar, 2024; Basak and Zhou, 2020). Third, our analysis was focused on set-
tings with ex ante homogeneous investors (cf. Sdkovics and Steiner, 2012), in which there is
little information asymmetry among investors. Analyzing the more general setting is left for
future research. Fourth, we also restricted attention to settings where development agencies
can observe investors’ profits. In practice, investors may seek to conceal profits or overstate
losses, while agencies can engage in costly monitoring. It remains to analyze how the optimal
program is modified in the presence of reporting fraud and monitoring costs. Finally, as an

intermediate step toward implementing the proposed program in practice, lab experiments
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can provide guidance on its effectiveness. There is already a large experimental literature on
different aspects of coordination and global games (Avoyan, 2024). Investigating subsidies

in that context is a feasible and fruitful direction for future research.
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Online Appendix A: GPS and GPLS with Finite Noise

In Proposition 4 and Proposition 6 in the text, we characterize the equilibrium as the noise
becomes vanishingly small. Here, we present propositions characterizing the equilibrium
under a GPS and GPLS program for finite noise, 0 < ¢ < min{A; — A, A — A,}. The proofs

of these propositions are in Online Appendix B.

For a fixed noise, o € (0, min{A4; — A, A— A,}), and a lower threshold 2/, let Aq(2', o) denote

the value of A at which investor i’s payoff is equal to zero, i.e., 7(K(Ao(2,0); 2"), Ag(2', 0)) =

Ao(a',0) — = — (1—a)2(5+K§(Ao(x/,a);x')) = 0 where K (Ao(z',0);2") = KPr(x; > 2'|Ag(2’, 0)).
Then,
J 1
Ag(2',0) = Ty 5 —
o TP K+ KPriz = oA, 0)))

Substituting the value of Pr(z; > 2'|Ag(2’, 0)),

Ay ;x> Ag(2! o) + o
AQ(JS’,O') _ §+ (1—6a)2 (K-ﬁ-g [1_<1.1/,A?7(1./70))}) ;x’ € [AO(x’,O') — 0, AO(:L",O') + 0'] (15)
A s < Ag(a’,o) — o

For o’ € [Ao(2',0) — 0, Ao(2’, o) + o], solving for Ag(a’,0) yields

Ayt o) = x’+r UK AW x UK o 2+20 o
NPT 2 T2 TR2 2 20 K 2 K(1—a)?

The other root yields |Ag(z’, o) — 2’| > o, which is not possible.

We can now present the equilibrium characterization. The following proposition states the

result for a GPS program.
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Proposition 9. Suppose assumptions 1 and 2 hold and a GPS program (s,t) is in place.

There is a unique equilibrium wherein x’' = x'(s,t) < z*, where

/( t)_ r*—s ;Al2$*—8+0
TS Y = Y min{@(s, 1), 2*} ;A <2* —s+o,

and & € X':={x e R: Ag(z,0) —0 < x < Ag(z,0) + o} is the unique solution to

_ t [(@+0)? = A(T,0) r(@+o— Ay(T,0)) 200 | ( K+ K

=5 B - 7o 08 i T— AT
20 2 o (1—@)2}( K+%(1_( OU( )
+ 1z —s.

Moreover,

o ifs >t (A—A)), then 2" = A+o, so that all who invest will participate in the program.

o if s <t (A—A), then 2" = 2"(s,t) = max{a’,2°(s,t)}, where 2° is the minimum x
that solves

s =t Elmax{n(K(A;2"),A),0}x; = z],
so that some who invest will not participate in the program.

The following proposition characterizes the equilibrium under a GPLS program when noise

is finite.

Proposition 10. Suppose assumptions 1 and 4 hold and a GPLS program (s,t*,t7) is in

place. There is a unique equilibrium wherein x' = x'(s,tT,t7) < x*, where

YR A = A > x-S to
z'(s,17,t )_{min{f(s,ﬁ,t_),x*} A <2t — - 4o,
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where T € X' :={zx € R: Ag(z,0) — 0 <z < Ay(x,0) + o} uniquely solves

- i{(i%—o)Q_Ao(f,aV (@ +o—A(,0) 200 log< K+ K )]
20 2 a (1—a)?’K K+ g(j _ (x—A(;(ac,a))
LB Ao(Z,0)* = (—0)® r(A(@,0)—T+0) 206 o K+ K(1 — ()

20 2 « (1—a)2K & K
+a" —s.
Moreover,

o if s >ttt (A— A), then 2" = A+ 0, so that all who invest will participate in the

program.

o if s <t (A—A), then 2" = 2"(s,t,t7) = max{z’,2°(s,t7,t7)}, where z° is the

minimum  that solves
s =t" - E[max{m(K(A;2"), A),0}z; = z] + ¢ - E[min{n(K(A;2), A),0}|z; = z],

so that some who invest will not participate in the program.

Online Appendix B: Proofs®

Proof of Lemma 1. The first-order condition for the worker’s problem (1) is —(1 —«a)Y +
VOY/T =0, ie., T = 2L > 0. The objective is strictly concave. Thus, the optimal tax

(1-a)?Y
rate T*:min{ﬁ%,l}. ]

Proof of Proposition 1. Given the aggregate investment in the country is K, investor

7 invests in the country if and only if oA (1 — m) —r >0. If A< A, then

even if every other investor invests, i.e., K = K, investor ¢ does not invest because her

returns from investing is aA(l — m) —r = a(A— A;) <0. Thus, not investing

is the dominant strategy; in equilibrium, no investor invests when A < A;. If A > A,

28We are currently refining the proofs and appreciate any comments.
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even if no other investor invests (K = 0), investor ¢’s returns from investing in the country
is A (1 — ﬁ) —r = «a(A — Ap) > 0. Thus, investing is the dominant strategy; in
equilibrium, all investors invest when A > A;,. For A € [A4;, A}), both the equilibria - one

where no one invests and the other where everyone invests, exist. O]

Proof of Proposition 4. For the lower cutoff 2/, consider the following cases:

Case 1: s > z* — A,

From Proposition 9, ' = 2* — s when s > 2* — A;+ 0. As the noise vanishes, for s > z* — A;,
¥=A(st)=a" —s. (16)

Case 2: s <z* — A;
From Proposition 9, for finite noise (0 < ¢ < min{4; — 4, A — A;}) and s < 2* — A, + 0, &

is the fixed point of t - H(z,0) + 2* — s where

— % [(x; o)? 2A01(3:, o)? Ar(x +o —aAo(:zc, o)) ; 52(;5) e (mg(l K(EKA(;(Z - )}
(g ) tey)

As the noise becomes vanishingly small, lin% Z, if it exists, must solve
o—

limz =t-h(limz) + 2" — s,
o—0 o—0

where
h(z) =lim H(x,0).

o—0
From Proposition 9, # € X' .= {x € R: Ay(z,0) —0 <z < Ag(z,0) + 0)}. Let X be the
closure of the set X', ie., X :={x € R: Ayp(z,0) —0 < x < Ag(x,0) +0}. For any z € X,

=i { (=5 ) (D) - e (e ey )

For z € X, lin%)Ao(a:,a) = z. By L’Hopital’s rule, lim 2=4o@o) lim —2 Ay(z,0) =
o—

o—0 g o—0 9o
K 20
2? + ]. - m. Then,
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h(z) = <%+1 T Ra _a()SQ(x_ 2)) (x_ g) (1 —(;)QFIOg (%)

D) r e (2E)

We show the existence of lin%i and compute it by first showing that H(x,o) converges
o—
uniformly to h(z) as 0 — 0. The following lemma states this.

Lemma 3. Forx € X, H(z,0) converges uniformly to h(x) as o — 0.

Proof. Equation (18) demonstrates that h(z) = lir% H(z,0) exists for any € X (note that
o—
r/a ¢ X). Also, H(x,o0) is differentiable on X for ¢ > 0. We then prove that for = € X,
2 H(z,0) converges uniformly to a function d(z). Then because lir% H(z,0) exists for any
o—

x € X, H(z, o) converges uniformly to h(z) and 1'(z) = d(z) (Theorem 7.17 (Rudin, 1976)).

For all z € X, H'(x,0) exists and is

1 . 5 |
H/ = — _ A’ A 0 _ _ A
(1'70-) 20’ |:x +0 0(5[;70-)( 0(-1.70-) o (1 _ a)2K+ %(1 . (xAg-(‘%o.)))) 0(:B,0')j|
1 /2 —
_ _(LM N 1)
2 o
Substituting the value of hH(l) z=Ao(z,0)
o—r
K )
d(:l;):limH’(x7a):(E_|_1__ )
o—0 K K(l—a)Q(x—g)

We show that for all x € X, H'(z,0) converges uniformly to d(x) as ¢ — 0. Let 0 = 1/n.
Denote H'(xz,1/n) as H] (x). Then,
1 26

H, (2) = d(x) = 5 [(n(w ~ Aol 1/n)) +1) = (2% R T g))l

1 K+1+na: m‘+1 nx_nr_K_12+ 20m
2K 2 2 2a 2 2a K 2 K(1—a)?

_ (2% +2— ra _;)i(x— 2))]

B 1{&4_1 nx+nr+ (nx nr K 1)2+ 2on 20
- 2]K 2 2 2a 2 2a K 2 K(1—a)? K(1-a)

Denote % + % =k and F(IQEQ)Q = d and rewrite x — = as y. Then,
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s |-4(-2) (3 -
l-0) (-

Using binomial series expansion to approximate the square root term,

H(y) — d(y)| ~ %[@—%}(Hﬂj—ﬁ@)—(/ﬁ_%)ﬁ] _ é{ﬁﬁﬂ

Then, for any € > 0, there exists an N such that |H(y) — d(y)| < € for all n > N and

for all y. This implies that for © € X, H/(x) converges uniformly to d(z), i.e., H'(z,0)
converges uniformly to d(x) as 0 — 0. Furthermore, X is an interval [A; — o, A, + 0] because
x> Ao(2',0) —0 = 2/ > A, — 0. If that were not true, i.e., 2’ < A, — o, then, because
Ap(2’,0) > A; (from equation (15)), 2’ < Ao(2’,0) — o, which is a contradiction. By similar
logic, ' < Ag(2',0)+0 = 2’ < Ap+o0. Therefore X = [A;—0, Ap,+0]. Then, by Theorem
7.17 (Rudin, 1976), H(z,0) converges uniformly on X to h(z) as ¢ — 0, and h'(z) = d(z)
for z € X. A direct calculation verifies that h'(x) = d(x) indeed holds. O

For z € X', the slope of h(x) is

7= (% - (e ot 1)

IBRT x—Ao(z,0) o . r—Ao(z,0) _ oK 2
For all x € X', ilir(l) —=r=% ¢ [~1,1). Then (1715)1(1) e =224 1 Ri—are—D) < 1 =

K K(l—-a)?(z—1)

[e3

(5 — 1) < 1. The slope of h(z) is Zh(z) < 1. Therefore, h(z) admits a
unique fixed point and because ¢t € [0, 1], t-h(z)+2* — s admits a unique fixed point. Denote

it by A.

Next, we show that lin(l)éé exists and is equal to A. From Proposition 9, for any o €
ag—r

(0, min{A; — A, A— A,}), there exists a unique fixed point # (denote it by #(c)) that solves

(o) =t-H(Z(0),0) + 2" — s.
Because we define H(z,0) on X' C [A; — 0, A, + 0], the fixed point Z(0) € [4; — 0, A}, + 0].

Also, H(x,0) is continuous in both z and o. Then, existence of lir% z(o) follows because
ag—r

h(z) admits a unique fixed point. We showed earlier that ¢ - h(z) + 2* — s admits a unique
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fixed point A. Therefore, it must be that lim (o) =lim, 0 T = A.

o—0
Substituting A for z for h(A) (equation (18)), when s < z* — A;, as the noise becomes
vanishingly small, lir% # = A uniquely solves,
o—

A —s4t (1_2)2F{i__://2—10g (M)_1}. (19)

Note that there exist s,t such that A > z* (for example, s = 0 & t = 1 yields A > z*).

However, the lower cutoff will never be greater than the cutoff without the program, z*.

Thus, when s < z* — A;, in the limit, the lower cutoff is

Al(s,t) = liII%) '(s,t) = min{A(s, t), z*}. (20)

o—
Next, we compute the upper cutoff z”. For a small noise (0 < o < min{A; — A4, A — A}),
when s/t > A— A = n(K,A), tr(K,A) —s = 7(2,K,A) — 7(1, K, A) < 0. Therefore, the

upper cutoff is 2”7 = A+ . As the noise becomes vanishingly small, z”” = A in this case.

Finally, consider the case where s/t < A — A; = n(K, A). As we show in Proposition 9, the

upper cutoff is ” = max{z’, 2°}, where z° is the minimum = that solves

* _ Blmax{r(K(A:'), ), 0}z: = . @1

For 0 < 0 < min{4; — A, A — A}, the two cutoffs ”(s,t) and 2'(s,t) induced by the GPS
program (s,t) must satisfy either z”(s,t) > a'(s,t) + 20 or 2”(s,t) < a'(s,t) + 20. Suppose,

it is the first case, i.e., 2”(s,t) > 2/(s,t) + 20. Then, in this case, from equation (21),

s ) 1 r I

[ :E{max{(f“ (1—a) (K +K(A2)) &>’O} e }
o § 1

;Z/r (A_Z— f(Alz; =2")dA

1 _ o

2
Tr =

’
—+

a (1-a)PK+K
As o — 0, A"(s,t) >

A'(s, 1) = = + _ 42 22
(5,2) a (l-aPK+K) t (22)
When 2”(s,t) < 2'(s,t) + 20, as 0 — 0, lin[l) (s, t) = liI% 2'(s,t). Then,
o— o—
A'(s,t) = Al(s,t). (23)
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Thus, for any GPS program (s,t), A” exists and can be characterized by either equation (22)
or equation (23), depending on the program parameters s and t. When A”(s,t) > A'(s,1),
its value is given by equation (22), which is continuous and increasing in s for a given t,
whereas A’(s,t) is continuous and decreasing in s, reaching A’(s,t) = x*. Consequently,
by the intermediate value theorem, for any given ¢, there exists an s such that A”(s,t) =
Aj+7 = A'(s,t). Therefore, as the noise becomes vanishingly small, the upper cutoff A”(s, )
is
A(s.1) = {ﬁf Fsft s>t (Alfs t) = A)
(s,t) ;s <t (A(s,t)— A).
This concludes the proof. O

Proof of Proposition 5. The proof consists of three parts:

1. Show that for a given ¢ and a target 2/, there is a unique guarantee s(z’,¢) that induces
x'

2. Show that the cost of implementing any given target x’ is decreasing t.

3. Compute the expected costs for removing the inefficiency interval with the optimal

GPS program as the noise becomes vanishingly small.

The following lemma proves part 1,

Lemma 4. Under assumptions 1 and 2, for any =’ € (z* — A+ A + o0,2%), the set of
GPS programs {(s,t) : s € [0,3],t € [0,1]} that implement the target x' is non-empty.
Furthermore, for a given t, there is a unique s, denoted by s(z’,t), that implements x’.
Proof. Any 2’ € (z* — Aj+ A+ o0, 2*) will either satisfy 2/ < Ag(2’,0) —0 or ' € [Ag(2/,0) —
o, Ao(2',0)+0). This follows because any a2’ satisfies ' < Ag(2',0)+0. If 2’ > Ay(2/,0)+0,

then, from equation (15), ' > Ay+0 = 2’ > A, (0 > 0), which is a contradiction because

r<a* < A,

Then, consider the following two cases:

Case 1: 2/ < Ay(2/,0) — 0

49



From equation (15), Ayg(2’,0) = A;. In this case, 2’ < A; — 0. It follows from Proposition 9

that any (s,t) that satisfies the following equation implements 2,

, , r 4] K+ K
' =a'(s,t) oz+(1—a2)K og( K > s

Then, the set of programs that achieves ' when 2’ < Ay(2',0) — o is {(s,t) : t € [0,1],s =

*

x* — x'}. Therefore, for any given ¢, there exists a unique guarantee s(a’,t) that achieves 2’

where,

s’ t) =" — 2. (24)
Case 2: 2’ € [Ay(2/,0) — 0, Ap(2',0) + 0)
For ' < z*, any (s,t) that satisfies the following implements 2’ (from Proposition 9), 2’ —
T(z') = 0, where
t [(@ +0)? = Ag(2,0)* r(a +o0— Ag(2,0))

:% 2 e}

200 o ( K+ K )]—i—x*—s
(1—aPE °\K tE(1_ (L)) |

[

T(x")

Sl

For any ¢ € [0,1], T'(2') = & (2' + 0 — Ao(a’,0)) € [0,1). Then, by the implicit function

formula, C&—“”; = —#,(x,) < 0. This implies that for a given t, there is a one-to-one mapping
from 2’ to s. Thus, there exists a set of programs (s,t) that achieves any x’ € [Ag(2',0) —

0, Ap(2’',0) + o) and for a given ¢, there is a unique guarantee s(z’,t) that achieves x’.

Therefore, for any 2’ € (z* — A; + A+ 0, 2*), the set of programs that achieves the target a’

is non-empty and for a given ¢, there is a unique s(z’,t) that achieves z’. O

The following lemma proves the second part:

Lemma 5. Under assumptions 1 and 2, the expected cost to the policymaker to implement

a target ', where ¥’ € (2" — Ay + A+ o,2%), is (weakly) decreasing in t.

Proof. Following Lemma 4, we can now state the GPS program (s, t) in terms of the profit
sharing rate ¢ and 2’ that it induces, i.e., (2, t). Let C'(A,2’,t; o) denote the cost of inducing

target «’ for a given t and A. The expected cost of the program (z/,t) is,
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EA[C(A, 2! t;0)) (s(2',t) — t - max{m(K(A;2"), A),0}) - (F(z"|A) — F(a'|A)) f(A) dA

]
°>\:>\

I
°>\:>\

[m(1, K(A;2), A) — m(2, K(A;2'), A)](F(2"|A) — F(2'|A)) f(A) dA

Il
—
|

S

(1, K (Asa'), A) — 7(2, K(A: 2) (/ (@il A) da:) (A)dA

([

/ / (1 K(A:2'), A) — m(2, K (A2}, A f(Alws) dAf ()

7(1, K (A7), A) — 7(2, K(A; '), A)] f(wi| A) da:i)f(A) dA

\a>

\ z~a

_/, <E[ (1, K(A;2'), A)|z;] —E[W(2,K(A;x/),A)]xi})f(xi)dxi

A+o
—/ max{E (1, K(A;2'), A) — 7(2, K(A;2), A)|z;], 0} f(w;) dx;. (25)
Because E[r(2, K(A;2'), A)|z;] does not depend on ¢, the relationship between the expected
cost of implementing 2/, E4[C(A,2',t;0)], and t depends on how E[W(l,K(A; $’),A)|xi]

varies with ¢. Then,
Er(1, K(A;2'), A)|z;] = /A (r(K(A;2"),A) — tmax{m(K(A;z'), A),0} + s) f(Alz;) dA

= / (2, K(A;2'), A) f(Alz;) dA — t/A max{7m(K(A;2"),A),0}f(Alx;)dA+ s

A

A
= E[n(2,K(4;2'), A)|z;] — t/A max{7m(K(A;2"),A),0}f(Alx;) dA + s,

where s = s(2/,t). Then for a fixed 2/,

d

ZE[x(1, K(A;2), A)|z;] = /max{ﬁ K(A, '), A), 0} f(Alz:) dA + EE- D

dt

dt
Next, as we do in lemma 4, consider the two cases:

Case 1: 2’ < Ay(2',0) — 0

In this case, from equation (24), s(a’,t) = z* — 2/. Then, for a fixed 2/, ds(cftl’t) = 0 and

fjmax{W(K(A,x’),A),O}f(A|mZ~)dA > 0 for z; > 2/. Then, LE[r(1, K(A;2'), A)|z;] <0

' dt
for all z; > .
Case 2: 2’ € [Ay(2/,0) — 0, Ap(2',0) + 0)
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For any given 2/, the marginal investor is indifferent between investing with participation

and not investing which gives us the relationship between s(2’,t) & t.

s(a',t) =t E[max{m(K(A;2'), A),0}|z; = 2] — E[n(K(4;2"), A)|z; = 2]

%s(x',t) = E[max{m(K(4;2'), A),0}z; = 2'] = / max{m(K(4;2"),A),0}f(Al]z") dA.
A

In this case,

d - B 4 - ds(x’t)
aE[W(l,K(A,&:),A)\xi}——/A max{m(K(4;2'), 4), 0} f(Ale) dA +

- _( /A Amax{w(K(A;x’),A),O} F(Alx;) dA — /A Amax{ﬂ(K(A; '), A), 0} f(Al2) dA).

For A > Ay(2',0), max{m(K(A;2"),A),0} > 0 and is strictly increasing in A. Therefore,

ff max{7(K(A;2"), A),0}f(Alx;) dA is strictly increasing in z; for z; > Ag(2’,0) — 0. Be-
cause 2’ > Ao(2',0) — 0o, fAZ max{7(K(A;z'),A),0}f(Alz;) dA is strictly increasing in x; for
x; > x'. Furthermore, we only need to check for x; > x’ since that is the range over which

we integrate in equation (25). Therefore, for any z; > z/,

A A
/A max{m(K(A4;2"),A),0}f(Alx;) dA > /A max{m(K(4;2"), A),0}f(Alz") dA.

This implies that %E[’/T(l, K(A;2'), A)]xl} < 0. Threfore, in this case, the expected cost of

implementing x’ is strictly decreasing in ¢. O

Finally, we compute the expected cost of removing miscoordination as the noise becomes
vanishingly small. To remove inefficiency, the target must be ' = A; — 0. Because the

cost is decreasing in ¢, we can set the highest profit-sharing rate, ¢t = 1. The corresponding

compensation, s(2’,1), is s(2/,1) = ﬁ [log (K—;QK> — ﬁ] +o0 =a*— A+ 0. Thus,
the upper cutoff z” (from Proposition 9) is
r ) K+ K
2 =A 4+ s 1) =—+ —lo (_ )+a:$*+0. 26
s ) =D e (S (26)

Thus, the ex-ante cost is
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A

EA[C(At=1;0)] = / <(s($', 1) — 1 max{m(K(A;2'), A),0}) - (F(2"]|A) — F(m'|A)))f(A) dA

(x,;A%—l)))f(A)dA
f

(A)dA

=0+ /:% ((s(:c’, 1) — max{r(K(A;2'), A),0}) - (1 -

'—o
"

1
2
N / N <(3(:1:", 1) — max{n(K(4;2), 4),0}) - (1 - 0))

'+o

+ /:% ((s(w', 1) — max{r(K(A;2"), A),0}) - (% (x; 4, 1) - 0>)f(A) dA+0

"_qg
1

_ /:’”MO _ (%%A))f(m dA+/; (s 1) — m(K (A '), A)) f(A) dA

[\]

N /:cjf <(3(;¢', 1) - 7r(QK(A; ), 4)) (56; I; 1))f(A) dA
_ Zié{s(m’, o + (2" — 2/ — 20) [s(:c’, 1) — (x ; v é - a);zg+m>}

+ {s(a:’ 1)+(T+ 0 )—i—a x"]}
o , — — - —

a (I-aP(E+K)/ 3
As the noise vanishes, the cost converges to

tiny E4(C (4., 1:0) = i { = o) - (2 = 2 - ]

(e (53 4]}

Substituting lin% s(@',1) =a*=A;, o' = A'(lim s(2/,1),t) = Aj,and 2”7 = A" (lim s(2’,1),1) =
ag—

o—0 o—0

A+ s(2’,1) = z* (from proposition 4),

lim B4[C(A,2',1;0)] = lim {% {:g A (” ; A _ A,)] } - %.

Therefore, as the noise becomes vanishingly small, the optimal GPS program that removes

miscoordination is (s,t) = (z* — A;, 1), and its expected cost is %—(I*Z__‘Xﬁ. O

Proof of Proposition 6. The proof follows a similar approach to that of the proof for
Proposition 4. Consider the following cases for x’:

Case 1: e >t = A;

For 0 < ¢ < min{4, — A, A — A}, 2/ = 2% — —= when == > 2* — A; + o (from
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Proposition 10). As the noise becomes vanishingly small, for == > 2* — A,,

o =A(s,tT ) =a" — ° (27)
1—1-
Case 2: = < 1" — A
From Proposition 10, the cutoff is 2’ = min{Z(s,t",¢7), z*} where Z uniquely solves
_ ot [(i—l—a)z — Ao(Z,0)*  r(E+0— Ay(T,0)) 200 ! < K+K )]
T=— - - = 108 i i—A(Gy0
20 2 o (1—0a)2K K+%Q_( Ag(,)))
t~ [Ao(#,0)2 = (@ —0)® r(A(i,0)—F+0) 200 (E+5(1-(=227))
— — - —lo
20 2 a (1—a)k ° K
+ " —s.

Let t* =t~ 4+ . We can rewrite the implicit function for z as

F=_L [(:ﬁ +0)* = Ao(#,0)> r(@+0—A(F,0) 200 o K+ K )}
- 20 2 o (1_&)2F & K+ %(1_ (i—Ag(i,o‘)))
+t__ (T+o)—(E-0)? r@+o-7+0) 200 o K+ K
20 2 a (1—a)2K & K
+2" —s
s i|:(33+0) —Ao(#,0)> r(@@+o—A(F,0) 200 o ( K+ K )}
11—t 20 2 o (l—a)ZK 8 K—l-%(l—(j_Ag(xU)))
+ " —

1—t

Therefore, in the GPLS case, ¥ is the fixed point of the function Z=H(z,0) + 2* — ==

where H(z,0) is given by equation (17). For x € X = {z € R : Ag(z,0) —0 < z <

Ao(z,0) + o}, H(z,0) converges uniformly to h(z) (Lemma 3). Because == = tf:tt__ <1,

—=h(z) + 2% — = admits a unique fixed point, A. Then, using the same arguments as in

the proof of Proposition 4, hH(l] i=A.
o—

Calculating h(A) (equation (18)), when == < z* — A, as the noise becomes vanishingly

small, lir% # = A uniquely solves
o—r

. s tt —1t~ ) A—r/a A—r/a
A=z"— — —1 — | = 15. 2
o e e )-1f e

Because A'(s,tT,t7) < z*,
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Al(s,t7,t7) = min{A(s,t7,t7),2*}.
For the upper cutoff 2”, for a small noise, 2 = A + o for s/tt > A — A = 7(K,A)
because t (K, A) — s = myps(2, K, A) — wyps(1, K, A) < 0. Therefore, as the noise becomes

vanishingly small, 2" = A.

Finally, when s/t < A — A; = n(K, A), from Proposition 10, 2" = max{z’, v°} where x° is
the minimum x that solves s = E [ (¢" max{r (K (A;2’), A),0}+t~ min{r (K (A;2’), A),0})|z; =
x] . Under a GPLS program (s,t",¢7), the induced 2" (s,t",¢7) and 2/(s,t",¢™) either satisfy
(s, tT,t7) > (s, tT,t7) + 20 or (s, tT,t7) < 2'(s,tT,t7) + 20. When 2”(s,tT,t7) >
2'(s,t%,t7) + 20, E[min{m(K(A;2'), A),0}|z; = 2”] = 0. Thus, the upper cutoff 2 solves
s = t"E[ max{r(K(A;2'), A),0}|z; = 2"] = fxx,:/_tf (A — (1 5a)2 K+K) (Alz; = 2") dA.
Therefore, the upper cutoff is 2" = A; + %. As o0 — 0, A"(s,t%,t7) > A'(s,17,17) and is
) 1 s

A(s, Tt _—+ — + —. 29
S S R R 2

When 2" (s,t7,t7) < 2/(s,t7,t7) + 20, as 0 — 0,

A (st t7) = Al(s,t7,17). (30)
Thus, as in the GPS program, for any GPLS program (s,t",¢7), as the noise vanishes,
A"(s,tT,t7) is given by either equation (29) or equation (30). By the same arguments used

to compute A” in the GPS case, we obtain

)= {Al +s/tt s>t (A(s,t) — A)

" +
A(s,t (s, t5,07) s < i+ (Al(sit) — Ay).

This concludes the proof. O

Proof of Proposition 7. We prove this in three parts:

1. Show that for a given ¢* and ¢, there is a unique s(a’,¢",¢7) that induces a'.

2. Show that the expected cost of implementing any target 2’ is decreasing in both ¢+
and 1.

3. Compute the expected cost of resolving miscoordination with the optimal GPLS pro-

gram as the noise becomes vanishingly small.
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Lemma 6. Under assumptions 1 and /, for any 2’ € (z* — A+ A+ o0,2%), the set of GPLS
programs {(s,tT,t7) : s € [0,35],t* € [0,1],t~ € [0,t]} that implement the target ' is non-
empty. Furthermore, for a given t* and t~, there is a unique s, denoted by s(z',t*,t7), that

implements x’.

Proof. The proof for this follows the same approach as the proof for lemma 4 with some
modifications. Any 2’ € (z* — A; + A+ o, 2*) will either satisfy 2/ < Ag(2’,0) — o or 2’ €
[Ag(2',0) — 0, Ap(2’,0) + o). When 2/ < Ag(2',0) — 0, Ao(2',0) = A; (from equation (15)).

It follows that ' < A; — 0. Then, from Proposition 10, 2" is 2’ = 2/(s,t",t7) = 2* — ==.

For any 2’ < Ag(2',0) — o, the set of GPLS program that induces =’ is {(s,t7,¢t7) : s =
(1—t7)(z* —2'),t" € [0,1],¢~ € [0,¢]}, and for any ¢ and ¢, the guarantee s that induces
2 is,
s/t t7) = (1 —t7)(z" — 2. (31)
When 2’ € [Ap(2/,0) — 0, Ag(2’,0) + o), for any 2/ < z*, any (s,t",¢7) that satisfies 2’ —
Ty(2") = 0 implements 2" (Proposition 10), where
Ty(a) t+ [(m' +0)2— Ay(r,0)* 1@ +o0— A2, 0)) 200 ( K+ K >]
2\ V) = 5~ o K ' —Ao(x’ o
20 2 el (1-a)?K Kj K(1 - 2Aolelo)y
t~ [Ag(2',0)? — (@' —0)*  r(Ao(a',0) — 2’ +0) 200 K+5(1- %@0))
20 2 a (1—-a)2K K

+

+ 25 —s

7[($’+0)2—A0(as’,0)2 (@ + o — Ao(7, o)) ) <K+ K+K ))}

= — — — log —
_ K z'—Ao(2,0)
20 2 «Q (1—a)? %(1 - (;

+t7 (2 — ) + a2 — s
The derivative of Th(2') wr.t. ' is Th(2') = L(2" + 0 — Ag(a’,0)) +t~. Because 2’ €
[Ag(2,0) — 0, Ag(2',0) +0), (' +0—Ag(a’,0)) € [0,20). Substituting v = t+ —t~, we have
Ti(x") € [0,1). Then, by the implicit function formula, Cil—”g/ = —#2,@,) < 0, which implies
that for a given t* and ¢, there is a one-to-one mapping from 2z’ to s. Therefore, there
exists a set of programs (s,t%,¢7) that induce any 2’/ € (x* — A+ A+ o, z*) and for a given

t* and ¢, there is a unique s(a’,¢",¢7) that induces ' ]
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The following lemma proves the second part:
Lemma 7. Under assumptions 1 and /4, the expected cost to the policymaker to implement

a target ', where @’ € (x* — A+ A+ o,2%), is (weakly) decreasing in both t* and t~.

Proof. By lemma 6, we can state the GPLS program (s,t",¢7) in terms of 2/, t*, and .
Let C(A,2',t",t7;0) denote the cost of inducing 2’ for given ¢, ¢t~ and A. Using the same

approach as in lemma 5, the expected cost of the program (z/,¢%,¢7) is

EAlC(A 2/ t7,t; / / Tgpis(1, K (A;27), A) — mops(2, K(A; 2'), A)) f (Alz;) dA S (x;) da;

= [ ) 0P ) )

Z—I—o
= [ max{UP"*(/,z;) — US"* (2, 2;), 0} f(2) dw, (32)

Z,l

where

A A
Uiqpls(l'/, ZL‘Z) = /ﬂ-gpls(la K(A, x,)y A) f(A | mz) dA7 Uéqpls(x/7 xl) - /71-91318(2’ K(Aa l‘,), A) f(A | xl) dA
A A
Because U" does not depend on ¢+ or ¢, the relationship between the cost of implementing

2/ and t*, ¢t~ depends on how U" varies with t* and ¢~ for 2; > 2. For a given 2,

A

UPS (! ;) = U (2, ) — /t+ max{7m(K(A,xz"),A),0} —t~ min{n(K(A,x2"),A),0}f(Alx;) dA + s.
A
Since U and 7 are independent of ¢+ and ¢~
d ds(z', t*,t7)
gpls ) )
LU ) / max{m (K (4,2'), 4), 0} (Alry) dA + L),
d ds(x', t7,t~
— U5 (2 1) / min{r(K(A,z"), A),0}f(Alz;) dA + M
dt— dt—
Next, consider the two cases:
Case 1: 2/ < Ayp(2/,0) — 0o
ds(z' tt )

From equation (31), s(2/,t",t7) = (1 —t7)(2* — /). Then, for a fixed 2/, =5 =

—(z* —2') = 2/ — x*. Then,

A
%U{W(f,x) =g — o — /A min{r(K (A, z'), A),0} f(Alz;) dA
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Since fAZ’/T(K(A, x'), A) f(Alz;) dA, the expected payoff with z’ as the cutoff strategy, is

increasing in x; then for any x > 2/,

/ min{r (K (A4,2"),A),0}f(Alx;) dA > / min{r(K(A4,2"),A),0}f(Al|z") dA
A Af

> / T(K(A,2"), A)f(Al2)dA - {2’ < Ay(2',0) — o}

A
> o — .

_d_ryopls (g 1) = o' — 2* — fjmin{ﬂ'(K(A,x’),A),O}f(/Hxi) dA < 0 for

This implies that =

all x; > 2. So, the least costly way to implement 2’ < Ay(z’,0) — o is with the highest ¢~.

dt+

Next, for a fixed 2/, L) — 0 and [ max{r(K(A,2'), A),0}f(Alz;) dA > 0. Then,

4 U (! ;) < 0 for all z > 2/. So, the least costly way to implement 2/ < Ag(2',0) — o

is with the highest ¢7.

Case 2: 2’ € [Ay(2/,0) — 0, Ap(2',0) + 0)

For any given x’, when investors receive that signal, their expected payoff must be 0. Then,

s =t E[max{m(K(A4;2'),A),0}2'] +t - E[min{m(K(4;2'), A),0}|z'] — E[r(K(A;2"), A)|2"].

Taking derivatives w.r.t. t & ¢,

—d(xd: ) B[ max{r(K(A:2'), A), 0} 2] = /A max{r (K (A;2'), A), 0} f(Al') dA
ds{xlc}f—j ) = E[min{r(K(A;2'), A),0}|2'] = /A min{7(K(4; '), A), 0} f (Al2) dA

First consider ¢*. In this case,

ds(z';tT,t7)

d — U (2! x) = / max{m(K(A;2"), A),0} f(Alz;) dA i+

i+

_ /A masc{r(K(A:2'), A), 0} f(Al:) dA + /A max{r(K(A: 2'), A), 0} f (Alz') dA

Now, fAX max{m(K(A;x"),A),0} f(Alx;) dA is weakly increasing in x;. Furthermore, we only
need to check for z; > 2’ since that is the range over which we integrate in equation (32).

Then, for any z; > 2/, fjmax{w(K(A; x'), A), 0} f(Alx;) dA > fj max{7(K(A;2'),A),0}f(Alz") dA
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This implies that

d

A
g — Uy /max{ﬂ (A;2"), A),0} f(Al|z;) dA + /Amax{ﬂ(K(A;x’),A),O}f(A[x’) dA <0.

Therefore, the cost of implementing any 2’ € [Ag(2',0) — 0, Ag(2’,0) + o) is decreasing in
t*. Finally, consider ¢~.

d
dt~

ds(a',t*,t7)

A sy ) /mln{w (A/), 4),0} f(Alw) dA + P L

——/ min{W(K(A;:c'),A),O}f(A|x,~)dA+/ min{r (K (4;2"),A),0}f(Al|z") dA
A A

The term fAZ min{w(K(A;z'), A),0} f(A|z;) dA is weakly increasing in ;. Therefore, for any
x; > 7, fAZmin{ﬂ( K(A;2'),A),0}f(A|z;) dA > fjmin{ﬂ(K(A;x’),A),O}f(A|x’) dA. This
d ngls( ' Z) <0.

implies that =

Therefore, the cheapest way to implement any target =’ is to set the highest possible value

fortt & t~. O

Finally, we compute the expected cost of removing miscoordination. The guarantor must
set a target ' = A; — 0. Because the cost is decreasing in both ¢t and ¢~, she can set t7 =1
and ¢~ = t. The corresponding guarantee is s(z’,1,t) = (1 — ¢)(x* — A; + o) and the upper
cutoff is, " = A; + (1 — t)(z* — A; + 7). Then, for 2’ = A; — o, the expected cost is

A

EA[C(A, 2/ 1,t;0)] = /

A

<(s(x', 1,t) — max{n(K(A;z"), A),0}
— 1 -min{r(K(4;2),A),0}) - (F(z"|A) — F(x’|A)))f(A) dA

Lo [T s — 1, ) (2= (224 ) aa
a-al L, > 2

1"

X /x -7 (S(QZ/, Lz) _ 7T(K<A;:L’/>,A)> dA

Ap=z'+0
z''+o " _
+/ (s(2/,1,7) —W(K(A;x’),A))(%(m A) +1) dA+O}.
2 —o ag

We compute each of the three terms individually. Consider the first term,

29



/ﬂcxl+fs(z', 1,7) — T n(K(A; ), A)) (% - (IIQ_O_A)) dA

- /j [S(x/’ LE) - Z(A “a (1— a)?(K+6§(1 - (u»))] % - (x/2_aA>) “

LA P N— 10g<5+f>”
a 3 (1-a?’K (1-apK’ K

For the second term,

1! 17

/;js(x', 1,7) — n(K(Asa'), A)) dA = /ﬂ: (s(x', 1,7 — (A -- = Q)Q‘EK+ F))) dA
= (2" — ' — 20) [s(x', 1,7) — (x” ; v Al)] .

Finally, consider the third term,

/x T 1) = r (K (A2, A) (% (‘CU_ A) + 1) iA

= /:a <s(:(:', 1,7) - (A - g = a)2i5+7)>) (%(azg— A) - 1) dA
- (s(xf, 1,7) — <x A %))

Then, the expected cost is

b7 1 P L 20 20K K+K
EA[C(A,x,l,t,U)]—Z_A{U[s(x,l,t)—t[x a—l—g (1—06)2?+(1—a)2f210g( K )H
x//_’_x/

+ (2" — 2 — 20) {s(x', 1,7) — { - AZH +20 [s(x', 1,7) — (x A -

)|}

SIS

where s(2/,1,%) = (1 — t)(z* — A; + o). As the noise goes to 0, the cost is

lim EA[C(A,2',1,t0)] = lim M {s(m’, 1,t) — (a: —2|—a: — Al)}.

o—0 o0 A — A

As the noise becomes vanishingly small, 2/ = A’ = A, 2" = A" = A+ (1 — t)(z* — A;) and

lin% s(a’,1,t) = (1 — t)(x* — A;). The expected cost of removing miscoordination is
ag—

lim EA[C(A, 2/, 1.F o)) = o —4) [(1 D — A — <A" ; A Alﬂ

oc—0 Z_A
- D - A {(1 D —Al)} Q- - A
A-A 2 2 A-A
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Therefore, as the noise becomes vanishingly small, the optimal GPLS program that removes

(1-1)2 (x*—A;)?
2 A-A

]

miscoordination is (s,t%,t7) = ((1 —¢)(2* — A;), 1,1), and its expected cost is

Proof of Proposition 8. The R-GPLS program is a GPLS program with ¢ = ¢~. Thus,
lemma 7 holds for the R-GPLS program which implies that the optimal R-GPLS program
sets tT =t~ = {. Therefore, the guarantee s required to remove miscoordination (2’ = A;—0o)
= s(A— o 18 = (1 - D" — A+ 0). (33)
and 2/ = A;+ M%m The expected cost calculation is identical to the optimal GPLS case,
except that here we set t+ =t (instead of ¢+ = 1). Then, as the noise becomes vanishingly
small, 2/ = A" = A, 2" = A" = A + “%;z)(:c* — A)) and },E%S(x,’ 1,t) = (1—¢)(z* — A;). The

expected cost of removing miscoordination is

' / B A" — A B . (AT A
;%EA[c*(A,x,u;a)J=ﬁ[<1—t><x —A»—t( . —Al)]

(=B (@ - A) {(1 — 1) (z* —Al)} (=1 - A
i A-A 2 2t A—A

Therefore, as 0 — 0, the optimal R-GPLS program that removes miscoordination is (s,¢~,t7) =

(1-D? (2" = A))?

((1 — %) (ZE* - Al), 17%)7 and its eXpeCted cost is 2t A-A

Finally, for ¢ < 1, (1;)2 (JL’%—_‘Z)Q > (1—25)2 (%%—:X)2 -

Proof of Corollary 4. Under optimal GPS and GPLS programs, (1) nearly all invest
when A > A; and nearly none do when A < A;, and (2) the normalized net payoff from
investing versus not 7(K, A) < 0 for A < A;, and (K, A) > 0 for A > A;. Therefore, from

(8) and (3), a participating investor’s return under the optimal GPS program is

51 ,
Tgpszaﬁ(l,K’A)_i_r _ OésgpS‘{'CY(A—mK) 714<141 (34)
Q Sgps T T CA > A
r—a(Ay,—z")—a (A —A) ;A<A (35)
r+ao (et = A) A > A,

where s,,s = 2" — A; (Proposition 5). For A < A;, we have rg,, < r, because z* < A;,.
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Similarly, from (14) and (3), the corresponding return under the optimal GPLS program is

- - s .
Fonts = O Tops(1, I, A) £ = asgps +tr+a(l —1) (A — —(1—a)2K> A< A (36)
Q Sgpls + T A > A
_ JA=Drgstir A< A (37)
o r+t(1 -t a(zr—A) ;A>A,

where the second line is strictly large since r > rg,, when A < A; (the second line can be

written as (1 — ) rgps +tr + (1 — ) (r — rgps + a (2* — Ay))).

where we used sgs = (1 — €)8gps since sgps = (1 — t)(z* — A;) from Proposition 7. The
returns for investors who do not participate is similarly

a A—Ll) A< A

-’ K

Tp =a (K, A)+r = 5 (38)
a A—(l_a%&) A AL

_ Jr—a(Ap—A4) ;A< A 29

= VrtalA—A) A> A, (39)

]

Proof of Proposition 9. It follows from Lemma 2 that a cutoff pair (z/,2”) is given by
equation (11). First, we compute the lower cutoff 2’. Consider the two cases:
Case 1: s > m[log (KLKK) —%1 +o=z"—(A —o0)
Assumption 2 ensures that the set min{z s.t. A'(z;2’) > 0} is non-empty. From equation
(11), 2’ solves

0= E[r(K(A;2"), A)|z; = 2] —t- E[max{n(K(A4;2'), A),0}z; = 2] + s

s =t- E[max{r(K(4;2),A),0}z; = 2| — E[x(K(A;2), A)|z; = 2'].
Note that s > 2* — (A, —0) <= 2/ < Ag(2’,0) — 0. When s > 2* — (4, — o),

t* — (A — o) < t- E[max{r(K(A;2'), A),0}|z; = 2'] — E[n(K(4;2'), A)|z; = 2]
t' < A — o+t E[max{r(K(A;2),A),0}|z; = 2']. (40)

From equation (15), ' < Ag(2’,0) —0 <= Ap(z/,0) = A, and 2’ < Ay(2',0) —0 <=
E|max{m(K(A;2'), A),0}{z; = 2] = 0. Then, 2/ € {x € R: 2 < Ay(x,0) — o} satisfies
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equation 40.

Also, note that for any 2’ € [Ay(2/,0)—0, Ao(2, 0)+0), max{n(K(A;2'),A),0} < (A—A,)" .
For z; = 2/, A < 2’ + 0. Then, t - E[max{r(K(A;2'), A),0}z; = 2] < t(z/ +0— A) <
t'+ o0 — A. Thatis, 2’ > A — o+t E[max{n(K(4;2'), A),0}|z; = 2/]. Thus, s >
= (A —0) < 2/ < Ay(a,0)— 0.

The marginal investor gets a payoff of zero. Therefore, when s > z* — (4, — o), at x; = 2/,

Elr(1, K(A;2'), A)|z; = 2] = Eln(K(A;2'), A)|z; = 2] — t - E[ max{m(K(4;2'), A),0}z; = 2'] + s
0=FE[r(K(A;2),A)|z; =2]+s

ro I + 0 lo <K+F) s=x"—s
== — —s=a"—s.
o (1-apk °\ K

Case 2: s < m[log (%) —FKK} +o=a"— (A —o0)

Because s > 2" — A+ 0 <= 2/ < Ay(2/,0) —0o,s<a*— A +0 = 2 > Ay(2',0) — 0.
Also, o' < Ay(2',0) + o because 2’ < x* < Ap. Therefore, in this case, 2’ € [Ag(z/,0) —
0,Ao(z’',0) + o). The lower cutoff 2’ is bounded at z*. When 2’ < z*, the lower cutoff is

given by

Elr(1, K(A;2'), A)|z; = 2] = Eln(K(A;2'), A)|a; = 2] — t - E[ max{r(K(A; 2'), A),0}|z; = 2'] + s
v=r KA (- a)2(£5+ KA ) 2)
- E/[max{(A - a)2(55+ KAa)) §)0}
/+ (A - a)2(K5+ K(A:2)) g) f(Azi = 2')dA
' /_+ (A - a>2(56+ KA 7)) g) f(Alzi = ) dA

a'+o ) r)
—t- A— — — | f(Alx; = ') dA + s.
/Aow( I—aPE+ K@)  ao)@Ar=2)

0
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Solving the above equation,

Lo Y o K+ K ot (' +0)* — Ag(2',0)® 12’ + 0 — Ay(2',0))
o (1-afk °\ K ) 2 2 a

200 log( K+ K )] _
(1—a)2K K+ E(1 - (2=thlela)y)

, t {(.7:’ +0)? = Ap(2',0)* r(a’ +o— A2, 0))
2 o

20

200 ( K+ K >] .
— — log — - - =" —s.
(1—-a)K K+§(1 _ (f —Ao(z ,U)))
The lower cutoff 2’ solves 2’ = T'(x’) where

() t {(:U’ +0)2 — Ag(2',0)* 1@ +0— Ay(z,0))

:% 2 B «

206 o ( K+ K )]—i—x*—s
(1= apE P\K+ 5 (1 - () |

and 2’ € X' == {x € R: Ay(z,0) —0 <z < Ayg(x,0) + o}. T(x) is differentiable over

X' ={z eR: Ay(z,0) —0 <z < Ay(x,0) + o}. Then, the slope T'(z) is

T'(x) i|:$+0'—140(33,0')146<33‘,0') _ r(1— Ay(r,0)) 200 1 1 — Al(z,0)

T 20 o (-l g4 E(1— (i) 2

— %{HU—A(](I,U)(AO(%U) - g T —504)25+ K1 _1%)))

g

r ) 1 }
o TP E ()

t
=5 {x +0—0— Az, 0)] {from equation (15)}
t
= %<£L' — Ao(l',O') -+ O').
Sincex € X' :={x € R: Ay(x,0) —0 <z < Ao(z,0) + o} and t € [0,1], T'(z) € [0,1) =
T'(z) < 1. It follows that T'(z) admits a unique fixed point. Thus, when 2’ < z*, 2’ uniquely

solves equation (5).

Since the cutoff with program cannot be greater than the benchmark cutoff z*, 2’ < z*, the

lower cutoff in equilibrium when s < ﬁ {log (%) — FKK] +o0is

' = min{z(s,t), 2"},
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where  uniquely solves,

t (@ +0)2 = A(#,0)* rli+0 — Aoli, o)) m@ Og( K+ K )}

T =

20 2 e! (1-a)

Thus, there is a unique 2’ in the equilibrium. Finally, note that for s = 2*— A+ 0,7 = 2*—s
solves equation (41) implying «'(s,t) = x* — s in this case.

Next, we compute the upper cutoff z”. When s > t(A — 4)) = tn(K, A), tr(K,A) — s =
7(2,K,A) —m(1, K, A) <0. Therefore, the upper cutoff is 2” = A + ¢ because any investor

that invests participates in the program.

For < m(K,A) = A— A}, because 7(1, K(A,2'),A) — n(2, K(A,2'),A) <0, 2" < A+o.

Consider the indifference condition

> = Blmax{r(K(4;2'), 4), 0}|a]. (42)
Note that Elmax{r(K(4;). A),0}le] = & | max { (A= gy =2 ) 0] 20
and is weakly increasing in x;. Also, £ [max { (A — (1:5&)2 (5+K1(A;a;')) — g) , O} a:l} is strictly

increasing in x; when the conditional expectation is positive. Consider the following cases:

o If £ >0,

In this case, £ {max { <A— (1_6a)2 (5+K1(A;x’)) - ﬁ) ) O}

increasing, there is a unique x° that solves,

?ZE[”‘&X{(A‘ TR TR _£>’O}

o If s/t =0,

x;| > 0 and because it is strictly

T; = xo].

' = x* and equation (42) is satisfied for all z; < x* — ¢. Then, by the tie breaking

rule (we choose the lowest signal), 2° = A — 0.

Finally, because z” > 2, the unique upper cutoff is given by

2" = max{z’, 2°(s,t)}. O

Proof of Proposition 10. First, consider the lower cutoff z’.
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Case 1: : St, > K+K

( a) [log< K+K}+J—x —A+o

A+ o0, 2" < Ag(2',0) — 0. The arguments for this are similar to that in

the proposition for the GPS. Let ¢ = ¢t~ 4+, then for a GPLS program (s,t",¢7), 2’ solves
s =t"E[max{r(K(4;2),A),0}z; = 2| + ¢~ E[ min{n (K (A;2), A),0}|x; = 2]
— E[r(K(A;2), A)|z; = 2]
s = yE[max{n(K(A;2'),A),0}|z; =2'] — (1 — t)E[r(K(4;2), A)|x; =2'] {v=tT—t"}

1 —St— ] jt—E[maX{W(K(A;$/),A),O}]xi = x’} —E[F(K(A;x’),A)\xi _ x’}

— <A -0+ Vt_ E[max{r(K(A;2'), A),0}|z; = 2/]. (43)

1—
Note that 2’ < Ag(2', o) —o satisfies equation (43). Also, for 2’ € [Ag(2',0)—0, Ag(2’,0)+0),
max{m(K(A4;2')),0} < (A—A)*. Whenz; = 2/, A < 2'+0 and 2= E[ max{r (K (A;2), A),0}|z; =

2] <a'— (Al — o) implies 2’ > A — 0 + 2= E [ max{r(K (4; '), A),0}|z; = 2']. Therefore,

> i [log (K+K) K+K:| +0 = 2/ < Ay(a',0) — 0.

The lower cutoff is the signal at which her payoff from investing while participating in the

program is 0, i.e., E[myus(1, K(A;2"), A)|z; = 2’| = 0. Therefore,
0= E[r(K(A;2"), 1=t E[max{m(K(4;2'), A),0}[z'] —t~ - E[min{r(K(4;2'), A),0}z'] + s

A)lz
0=(1—t)E[r(K (A,

A)|z'] + s {2 < Ay(a,0) — o}
o=t g lo K+ K\ s
o -ak PUK -t

Case 2: = §(7‘5 [log(%) —L} +o=x"—A+o

Using the same arguments as in the proof of Proposition 9, in this case, 2’ € [Ag(2',0) —

o, Ao(z',0) + o). The lower cutoff 2’ solves E[myys(1, K(A;z'), A)|z; = 2'] = 0. Thus,
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0= E[r(K(A4;2"), A)|z'] — t* - E[ max{m(K(4;2'), A),0}|2'] —t - E[min{m(K(4;2"), A),0}2'] + s
o= [ (A ey ) =i

-t /<> (A~ e Ty 8=

_t/li( 7 (A— T <K5+K(A ) T) (Alz; = 2/ dA + s
v :t+'/A:(:U) (A_ 1-a) (K5+K A ) ;)f Alzi =)

S i L) A A
i /(, ( TP (KE 1 K(A ) _E)f i = ') dA+a" =

, tt |:(x/+g)2_A0(;p’70')2 (l’ —{—O’—AO({L‘,O')) 200 log( K“}‘F )]
r = - - b7 / /
Zl 1= or® 5 T - ()
“[Ao(2',0)? — (2 — 0)? B r(Ag(a’,0) — 2’ + o) B 206 o K+ %(1 — (—x’ng(x’,a)))
20 2 a (1-a)?K & K
+ 2" — s.

The RHS of the above equation has a slope less than 1. To prove this, let ¢+ =t~ +~. Then,

o [(;E’+J)2 —Ao(a,0)*  r(@'+o—A(a',0) 200 log. ( K+ K )}
29 9 a (1 _ a)2K K+ %(1 (x/_A(;(z' cr)))
[ +0)?— (' —0)? r@@+oc—2+0) 200 K+ K §
+ — — — — log +z"—s
20 2 a (1- o)k K
x’—l|:<x/+a>2_A0(x,70->2 _T(SC’+U—A0(SL’/,U)) _ 200 log( K+ K ):|
29 9 o (1 _ a)QF K+ %(1 (x/,Ag(x/ o‘)))
+t (2 —z") + 2" =
, oy 1@ 40— A2, 0)? (@ 40— Ay(a,0))
1ot 2 a

200 1 ( K+ K )] L s
———log — P P Tt — .
(1—a)’K K+%(1_( Ao(a/, ))) 1—¢
Taking derivative of the RHS w.r.t. 2/,
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N
[a—y
]
T
N———
DO
q|"
|
a\
+
Q
|
2
=
a\
2
2
&=
a\
2
|
Q1=
+
| =
s
=2
&\
S

a (1_(1)2&_‘_%(1 (x/_A(;(x/,a)))
. , r 0 1
— AO(:L' ,U) Ao(iﬁ ,0') o (1 _ a)2K+ %(1 (z’Ag(z’,U)))>:|
e O O R AN
= (1—75)20 r+o

{ a (1—a)25+%(1—1(%))}
- (%) |

20

The last inequality follows because < —

1t_) <1 and (' — Ay(2',0) + o) € [0,20). Thus,
there exists a unique x’. Moreover, because 2’ is bounded above at x*, the lower cutoff is

2'(s,t7,t7) = min{Z(s,tT,t7), 2%},
where  uniquely solves

ot {(g:o +0)2 — Ao(,0)?

s _T(fi+0—Ao(i‘,U))_ 200 10g< K+K >]
20 2 « (1—a)2K K+ %(1 _ (5:—,42(5;,0)))
L [Af@0P — (F=0)  r(Ay(@0) —F+o) 200 K+ E(1 - (iAot
20 2 o

(1—04)2F1Og K = ))ﬂ
+ 3% — s,

Finally, note that for = =2* — A+ 0,7 = 2" — =
7'(s,t) = v* — == in this case.

solves the above equation implying

Next, for the upper cutoff 2, when s/tt > A—A; = 7(K, A), Typs(2, K, A) —mgps(1, K, A) <
0 implying that 2/ = A+ 0. When s/t < A — A;, 2" < A+ o and 2" solves

s =17 E[max{m(K(A4;2'),A),0}z; = 2] +t - E[min{r(K(A;2'), A),0}z; = z]. (44)
Because E[n(K(A;z"), A)|x;] is strictly increasing in z;, the RHS of (44) is weakly increasing
in z when s/tt < n(K,A). 2" < A+ o implies existence. Let 2°(s,t*,¢7) denote the

minimum z that solves equation (44). Furthermore, 2" > 2’. Therefore, the upper cutoff is

2" = max{a’, 2°(s,tT,t7)}.

]
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